SOME GEOMETRIC MAPPINGS ON THE OPEN UNIT BALL

TATSUHIRO HONDA

ABSTRACT. Let B be the unit ball of a reflexive complex Banach space. We obtain growth and covering theorems for some holomorphic mapping on B with parametric representaion, and consider various examples.

1. INTRODUCTION

Let $(E, \| \cdot \|)$ denote a complex Banach space equipped with the norm $\| \cdot \|$. Let $B_r = \{ z \in \mathbb{C}^n : \| z \| < r \}$ for $r > 0$ and let $B = B_1$. In the case of one complex variable, B_r is denoted by Δ_r and Δ_1 by Δ. Let G be an open subset in E and let $H(G)$ denote the set of holomorphic mappings from $G \subset E$ into E.

By $L(E, F)$, we denote the space of all continuous linear operators from a complex Banach space E into a complex Banach space F with the standard operator norm. Let Id denote the identity in $L(E, F)$.

If $f \in H(B_r)$, we say that f is normalized if $f(0) = 0$ and $Df(0) = \text{Id}$. Let $N(B_r)$ be the set of all normalized locally biholomorphic mappings in $H(B_r)$. A holomorphic mapping $f : B \to F$ is said to be starlike if f is univalent, $f(0) = 0$ and $tf(B) \subset f(B)$ ($0 \leq t \leq 1$). The set of normalized starlike mappings of B_r is denoted by $S^*(B_r)$.

Suffridge [Su1], [Su2] and Gurganus [Gu] gave some characterizations of the starlikeness for a holomorphic mapping on the unit ball in a complex Banach space. There are many results concerning the estimates of growth for starlike mappings (see [Ba-Fi-Go], [Go1], [Gu] and [Li-Li]).

The purpose of the present study is to give the condition whereby holomorphic mappings satisfy similar estimates of the growth theorem.

2. PARAMETRIC REPRESENTATION

For each $z \in E \setminus \{0\}$, let

$$T(z) = \{ \varphi \in L(E, E) : \varphi(z) = \| z \|, \| \varphi \| = 1 \}.$$

This set $T(z)$ is nonempty by the Hahn-Banach theorem.

We obtain the following theorem from Theorem 1 of Suffridge [Su2]. This theorem gives an analytical characterization of starlike mappings of the open ball in a complex Banach space.

2000 Mathematics Subject Classification. Primary 32H02, Secondary 30C45.

Key words and phrases. Geometric Mappings, Parametric Representation.

Partially supported by Grant-in-Aid for Scientific Research (C) no. 17540138 from Japan Society for the Promotion of Science, 2007.

201
Theorem 2.1. Let \(f : B \to F \) be a normalized locally biholomorphic mapping. Then \(f \) is starlike if and only if \(\Re \{ \phi (|Df(x)|^{-1} (f(x))) \} > \) 0 for \(x \in B, x \neq 0 \) and \(\phi \in T(x) \).

We recall that a mapping \(f : B \times [0, \infty) \to E \) is called a Loewner chain if the following conditions hold:

(i) \(f(\cdot, t) \) is univalent on \(B, f(0, t) = 0, DF(0, t) = e^t \text{Id} \) for \(t \geq 0 \);
(ii) there exists a univalent Schwarz mapping \(v = v(z, s, t) \) (i.e. \(v \in H(B), v(0) = 0, \) and \(|v(z)| < 1, z \in B \)) such that \(f(z, s) = f(v(z, s, t), t) \) for \(z \in B \) and \(0 \leq s \leq t < \infty \).

The above Schwarz mapping \(v \) is called the transition mapping associated to \(f(z, t) \). It is known that starlikeness can be characterized in terms of Loewner chains: \(f \in S^*(B) \) if and only if \(f(z, t) = e^t f(z), z \in B, t \geq 0, \) is a Loewner chain [Pf-Su].

Now we set
\[\mathcal{M} = \{ p \in H(B) : p(0) = 0, Dp(0) = \text{Id}, \Re \phi(p(z)) > 0, z \in B \setminus \{0\}, \phi \in T(z) \}. \]

As in Kohr [Ko], we shall consider properties of the corresponding solutions of the Loewner differential equation.

Definition 2.2. Let \(f : B \to E \) be a normalized locally holomorphic mapping. We say that \(f \) has parametric representation if there exists a mapping \(h = h(z, t) \) which satisfies the following conditions:

(i) \(h(\cdot, t) \in \mathcal{M} \) for \(t > 0 \);
(ii) \(h \) is continuous on \(B \times [0, \infty) \),

such that
\[f(z) = \lim_{t \to \infty} e^t v(z, t) \]
for \(z \in B \), where \(v = v(z, t) \) is the unique solution of the initial value problem
\[\frac{\partial v}{\partial t} = -h(v, t), \quad t \geq 0, v(z, 0) = z, \] \hspace{1cm} (2.1)
for all \(z \in B \).

Let \(S^0(B) \) be the set of all mappings which have parametric representation on \(B \). Then \(S^0(B) \subset N(B) \) (see [Gr-Ha-Ko]). The following result is due to [Ha-Ko].

Theorem 2.3. Let \(f : B \times [0, \infty) \to E \) be a continuous mapping such that \(f(\cdot, t) \in H(B), f(0, t) = 0, DF(0, t) = e^t \text{Id} \) for each \(t \geq 0 \) and \(f(z, \cdot) \) is differentiable on \([0, \infty) \) for each \(z \in B \), and there exist \(r \in (0, 1), t_0 \geq 0 \) and \(M > 0 \) such that
\[\|f(z, t)\| \leq e^{t_0} M, \quad \|z\| \leq r, t \geq t_0. \] \hspace{1cm} (2.2)

We assume that there exists a mapping \(h = h(z, t) \) satisfies the conditions (i) and (ii) of Definition 3.1 such that
\[\frac{\partial f}{\partial t} = DF(z, t)h(z, t), \quad z \in B, t \geq 0. \] \hspace{1cm} (2.3)

Then \(f(z, t) \) is a Loewner chain and \(\lim_{t \to \infty} e^t v(z, s, t) = f(z, s) \) for all \(z \in B, s \geq 0, \) where \(v = v(z, s, t) \) is the solution of the initial value problem (2.1). Hence, if \(f(z) = f(z, 0) \) is locally biholomorphic on \(B \), then \(f(z) = f(z, 0) \in S^0(B) \).
According to Pfaltzgraff-Suffridge [Pf-Su], we say that a normalized locally biholomorphic mapping \(f \in H(B) \) is said to be close-to-starlike if there exists a mapping \(g \in S^*(B) \) such that
\[
\Re l_z([Df(z)]^{-1}g(z)) > 0
\]
for all \(z \in B \setminus \{0\} \) and \(l_z \in T(z) \). Let \(C(B) \) denote the set of all close-to-starlike mappings on \(B \). It is known that every mapping \(f \in C(B) \) is univalent on \(B \). Moreover, close-to-starlikeness can also be characterized in terms of Loewner chains, in the sense that \(f \in C(B) \) if and only if there exists a mapping \(g \in S^*(B) \) such that \(f(z,t) = f(z) + (e^t - 1)g(z) \) is a Loewner chain.

3. GROWTH RESULTS FOR MAPPINGS IN \(S^0_{k+1}(B) \)

Let \(B \) be the unit ball in a reflexive complex Banach space, and let \(k \) be a positive integer. Then \(f \in H(B) \) is said to be \(k \)-fold symmetric if the image of \(f \) is unchanged when it multiplied by the scalar complex number \(\exp(2\pi i/k) \). We say that \(z = 0 \) is a zero of order \(k \) of \(f(z) \) if \(f(0) = \ldots , D^{k-1}f(0) = 0 \) and \(D^k f(0) \neq 0 \). We denote by \(S^0_{k+1}(B) \) the subset of \(S^0(B) \) consisting of mappings \(f \) for which there exists a Loewner chain \(f(z,t) \) such that \(\{ e^{-t}f(z,t) \}_{t \geq 0} \) is a normal family on \(B \), \(f = f(\cdot,0) \) and \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t}f(z,t) - z \) for each \(t \geq 0 \).

Lemma 3.1. Let \(f \in N(B) \). If \(f \) is \(k \)-fold symmetric and \(f(z) \neq z \), then \(z = 0 \) is a zero of order \(m \) of \(f(z) - z \) for some \(m \) with \(m \geq k + 1 \).

Proof. We set, for \(z \in B \),
\[
F(z) = f^{-1}\left(e^{-2\pi i/k}f(e^{2\pi i/k}z)\right).
\]
Then \(F \) is biholomorphic from \(B \) into \(B \). Moreover \(F(0) = 0 \) and \(DF(0) = \text{Id} \). It follows from these and the Cartan Theorem that \(F \) is identity, that is,
\[
f(z) = e^{-2\pi i/k}f(e^{2\pi i/k}z).
\]
Therefore \(D^m f(z) = e^{-2(m-1)\pi i/k}D^mf(e^{2\pi i/k}z) \), that is, \(f(0) = 0 \), \(Df(0) = \text{Id} \), \(D^2 f(0) = 0 \), \ldots , \(D^k f(0) = 0 \). This completes the proof.

One of the main results of this section is a growth theorem for mappings in \(S^0_{k+1}(B) \). To this end, we need to use the following lemma (cf. [Ko]).

Lemma 3.2. Let \(f \) and \(h \) satisfy the assumptions of Theorem 2.3. Let \(v = v(z,s,t) \) is the solution of the initial value problem (2.1). If \(e^{-t}f(z,t) - z \) has a zero of order \(k + 1 \) for each \(t \geq 0 \), then
\[
||z||\frac{1 - ||z||^k}{1 + ||z||^k} \leq \Re \varphi(h(z,t)) \leq ||z||\frac{1 + ||z||^k}{1 - ||z||^k}
\]
for \(z \in B \), \(\varphi \in T(z) \) and \(t \geq 0 \).

Proof. We take a point \(z_0 \) with \(||z_0|| = 1 \) and set \(g(\zeta) = (1 + \zeta)/(1 - \zeta) \) for \(\zeta \in \Delta \). Let \(p(\cdot,t) : \Delta \to \mathbb{C} \) be given by
\[
p(\xi,t) = \begin{cases} \frac{1}{\xi}\varphi(h(\xi z_0,t)), & \xi \neq 0 \\ 1, & \xi = 0 \end{cases}
\]
for \(\varphi \in T(z_0) \) and \(\zeta \in \Delta \). Then \(p(\cdot, t) \in H(\Delta) \), \(p(0, t) = g(0) = 1 \). Since \(e^{-t} f(z, t) - z \) has a zero of order \(k + 1 \) for each \(t \geq 0 \), for each \(t \geq 0 \), there exists a holomorphic mapping \(F(z, t) \) on a neighbourhood of 0 such that

\[
f(\xi z_0, t) - e^t \xi z_0 = \xi^{k+1} F(\xi z_0, t).
\]

Then

\[
\frac{\partial f}{\partial t}(\xi z_0, t) - e^t \xi z_0 = \xi^{k+1} \frac{\partial F}{\partial t}(\xi z_0, t).
\]

Therefore, we obtain that

\[
p(\xi, t) = \varphi \left([DF(\xi z_0, t)]^{-1} e^t \xi z_0 \right) + \varphi \left([DF(\xi z_0, t)]^{-1} \frac{\partial F}{\partial t}(\xi z_0, t) \right) \xi^k.
\]

Thus, there exists a holomorphic function \(\tilde{p}(\xi, t) \) on a neighbourhood of 0 such that \(p(\xi, t) = 1 + \xi^k \tilde{p}(\xi, t) \). Since \(h(z, t) \in \mathcal{M} \), we deduce that \(p(\xi, t) \in g(\Delta) \) for \(\xi \in \Delta \). Therefore, \(g^{-1} \circ p(\cdot, t) : \Delta \to \Delta \) and \(g^{-1} \circ p(0, t) = 0 \). Since \(g^{-1}(1) = 0 \), there exists a holomorphic function \(G(w) \) on a neighbourhood of 1 such that \(g^{-1}(w) = (w - 1)G(w) \). Therefore, we obtain that \(g^{-1} \circ p(\xi, t) = \xi^k \tilde{p}(\xi, t)G(p(\xi, t)) \) on a neighbourhood of 0. Then, by the Schwarz lemma, we obtain that \(|g^{-1} \circ p(\xi, t)| \leq |\xi|^k \) for \(\xi \in \Delta \). Thus, there exists a holomorphic function \(H(\xi) \) on \(\Delta \) such that \(g^{-1} \circ p(\xi, t) = \xi^k H(\xi, t) \) on \(\Delta \) and \(|H(\xi, t)| \leq 1 \) on \(\Delta \). Then, \(p(\xi, t) = g(\xi^k H(\xi, t)) \). Next, in view of the maximum and minimum principle of harmonic functions, we conclude that

\[
\min \{g(|\xi|^k), g(-|\xi|^k)\} \leq \Re p(\xi, t) \leq \max \{g(|\xi|^k), g(-|\xi|^k)\}, \xi \in \Delta.
\]

For \(\xi = \|z\| \) in the above relations, we obtain the inequality (4.1). This completes the proof.

Lemma 3.3. Let \(h \) satisfy the assumptions of Theorem 2.3. Let \(v = v(z, s, t) \) be the solution of the initial value problem (2.1). If \(e^{-t} f(z, t) - z \) has a zero of order \(k + 1 \) for each \(t \geq 0 \), then

\[
e^s \|z\| \exp \left(\int_{\|v(z, s, t)\|} \frac{-2x^{k-1}}{1 + x^k} dx \right) \leq e^s \|v(z, s, t)\| \leq e^s \|z\| \exp \left(\int_{\|v(z, s, t)\|} \frac{2x^{k-1}}{1 - x^k} dx \right), \quad (3.2)
\]

for \(z \in B \) and \(t \geq s \geq 0 \).

Proof. Fix \(s \geq 0 \) and \(z \in B \setminus \{0\} \) and let \(v(t) = v(z, s, t) \). Also let \(l_z \in T(z) \). Then for all \(t, t_0 \) with \(s \leq t < t_0 \), we have

\[
\left\| v(t) - v(t_0) \right\| \leq \left\| v(t) - v(t_0) \right\| \leq \left\| \int_{t}^{t_0} \frac{dv(\tau)}{d\tau} d\tau \right\| \leq \int_{t}^{t_0} \left\| \frac{dv(\tau)}{d\tau} \right\| d\tau = \int_{t}^{t_0} \| - h(v(\tau), \tau) \| d\tau \leq M(t_0 - t).
\]

Hence \(\|v(t)\| \) is absolutely continuous for \(t \in [s, \infty) \) and thus \(\|v(t)\| \) is differentiable a.e. on \([s, \infty) \). Moreover,

\[
\frac{\partial \|v\|}{\partial t} = \Re \left[\varphi \left(\frac{\partial v}{\partial t} \right) \right]
\]

for \(\varphi \in T(v(t)) \) a.e. on \([s, \infty)\), by [Ka, Lemma 1.3]. Equivalently,
\[
\frac{\partial \|v\|}{\partial t} = - \Re \left[\varphi(h(v,t)) \right], \quad \text{almost everywhere on } [s, \infty).
\] (3.3)

We now integrate both sides of (2.3) with respect to \(t \) to obtain
\[
- \int_{\|z\|}^{\|v\|} \frac{1 + x^k}{x(1 - x^k)} \, dx = - \int_{s}^{t} \frac{1 + \|v(\tau)\|^k}{\|v(\tau)\||(1 - \|v(\tau)\|^k)} \cdot \frac{d\|v(\tau)\|}{d\tau} \, d\tau \geq \int_{s}^{t} d\tau = t - s
\]
and
\[
- \int_{\|z\|}^{\|v\|} \frac{1 - x^k}{x(1 + x^k)} \, dx = - \int_{s}^{t} \frac{1 - \|v(\tau)\|^k}{\|v(\tau)\||(1 + \|v(\tau)\|^k)} \cdot \frac{d\|v(\tau)\|}{d\tau} \, d\tau \geq \int_{s}^{t} d\tau = t - s.
\]

Finally straightforward computations in the above relations yield (2.2), as desired. This completes the proof.

We now are able to obtain the following growth result for the set \(S_{k+1}^0(B) \).

Theorem 3.4. If \(f \in S_{k+1}^0(B) \), then
\[
\frac{\|x\|}{(1 + \|x\|^k)^{\frac{k}{k-1}}} \leq \|f(x)\| \leq \frac{\|x\|}{(1 - \|x\|^k)^{\frac{k}{k-1}}} \quad \text{for all } x \in B.
\] (3.4)

Proof. Since \(f \in S_{k+1}^0(B) \) we have
\[
f(z) = \lim_{t \to \infty} e^t v(z, t)
\] (3.5)
locally uniformly on \(B \), where \(v = v(z, t) \) is the solution of the initial value problem
\[
\frac{\partial v}{\partial t} = -h(v, t), \quad \text{a.e. } t \geq 0, \quad v(z, 0) = z,
\]
for all \(z \in B \). Taking into account the relations (2.1), one deduces that
\[
\|z\| \exp \int_{\|v(z, t)\|}^{\|x\|} \frac{-2x^{k-1}}{1 + x^k} \, dx \leq e^t \|v(z, t)\| \leq \|z\| \exp \int_{\|v(z, t)\|}^{\|x\|} \frac{2x^{k-1}}{1 - x^k} \, dx,
\] (3.6)
for \(z \in B, \quad t \geq 0 \).

Since
\[
\lim_{t \to \infty} e^t \|v(z, t)\| = \|f(z)\| < \infty,
\]
we must have
\[
\lim_{t \to \infty} \|v(z, t)\| = \lim_{t \to \infty} e^{-t} \|e^t v(z, t)\| = 0.
\]

Letting \(t \to \infty \) in (3.6) and using (3.5), we obtain the estimate (3.4), as desired. This completes the proof.

We remark that if \(f(z, t) \) is a Loewner chain, then using similar reasoning as in the above result, we obtain the following growth theorem.
Corollary 3.5. Let \(f(z,t) \) be a Loewner chain. If \(e^{-t}f(z,t) - z \) has a zero of order \(k+1 \) for each \(t \geq 0 \), then

\[
\frac{\|x\|}{(1 + \|x\|^k)^{\frac{1}{k}}} \leq \|e^{-t}f(z,t)\| \leq \frac{\|x\|}{(1 - \|x\|^k)^{\frac{1}{k}}}
\]

for \(z \in B, \ t \geq 0 \).

REFERENCES

(Tatsuhiro Honda) DEPARTMENT OF MATHEMATICS, HIROSHIMA INSTITUTE OF TECHNOLOGY, 2-1-1 MIYAKE, SAEKI-KU HIROSHIMA 731-5193 JAPAN

E-mail address: thonda@cc.it-hiroshima.ac.jp