SPECTRAL INVARIANT FRÉCHET ALGEBRAS IN THE THEORY OF TOEPLITZ OPERATORS

WOLFRAM BAUER

ABSTRACT. We recall the notion of Ψ^*-algebras introduced in [7] resp. of algebras closed under holomorphic functional calculus. Some basic properties and examples are provided. Spectral invariant algebras can be defined by commutator methods. We demonstrate such a procedure by constructing localized versions \mathcal{A} of the Hoermander classes $\Psi^0_{\rho,\delta}$ of 0-order pseudo-differential operators. By specializing to the exotic case $\rho = \delta = \frac{1}{2}$ and using a result in [11] we show that Toeplitz operators on the Heisenberg group induced from the Hardy space over the unit ball in \mathbb{C}^{n+1} are contained in these Ψ^*-algebras \mathcal{A}.

1. INTRODUCTION

As one fundamental step to provide a suitable framework for analyzing a ring R of operators, the construction of an embedding into a closed operator algebra \mathcal{A} with good topological and algebraic properties is of importance. Moreover, \mathcal{A} should be as small as possible and reflect some structure of the elements in R. For dealing with operators which have local properties (e.g. micro or pseudo locality) the concept of C^*-algebras is not as useful since - roughly speaking - such properties are not preserved under taking norm closures. The appropriate replacement is given by the notion of a Ψ^*- resp. Ψ_0-algebra introduced through B. Gramsch in [7]. The first type is spectrally invariant in an enveloping space and carries a refined Fréchet topology. During the last two decades it has attracted attention that many consequences arise for algebras of this kind. In the present note we explain a way how to construct enveloping Ψ^*-algebras for a given ring of Toeplitz operators. In our analysis we use a result in [11] due to A. Nagel and E.M. Stein which states that the Szegoe-projection for the Hardy space over the real $2n + 1$-dimensional unit sphere is a pseudo-differential operator of exotic type $(\frac{1}{2}, \frac{1}{2})$.

2. ALGEBRAS CLOSED UNDER HOLOMORPHIC FUNCTIONAL CALCULUS

Let $(\mathcal{B}, \| \cdot \|_B)$ be a Banach algebra with unit e and $\mathcal{A} \subset \mathcal{B}$ a subalgebra which not necessarily has to be unital. In case \mathcal{A} is with unit we write \mathcal{A}^{-1} for the group of invertible elements in \mathcal{A}. Given a compact set $K \subset \mathbb{C}$ we mean by $\mathcal{O}(K)$ the algebra of germs of holomorphic functions defined in a neighbourhood of K.

2000 Mathematics Subject Classification. Primary 47L10, Secondary 35S05, 47B35.
Key words and phrases. Toeplitz operator, spectral invariance, commutator methods, Ψ^*-algebra.
Definition 1. The algebra \(\mathcal{A} \) is said to be closed under holomorphic functional calculus (CuHFC) in \(\mathcal{B} \) if for all \(a := \lambda e + x \in Ce + \mathcal{A} \) and \(f \in \mathcal{O}(\sigma_B(a)) \) the element \(f(a) \) which is defined via holomorphic functional calculus in \(\mathcal{B} \) is contained in \(\mathcal{A} \). Here \(\sigma_B(a) \) denotes the spectrum of \(a \) in \(\mathcal{B} \). Moreover, \(\mathcal{A} \) is called spectrally invariant in \(\mathcal{B} \) if
\[
(Ce + \mathcal{A}) \cap \mathcal{B}^{-1} = (Ce + \mathcal{A})^{-1}.
\]

For details we refer to [7], [8], [10] and we only mention that the notion of CuHFC is stable under arbitrary intersections. Moreover, \(\mathcal{A} \) CuHFC in \(\mathcal{B} \) implies spectral invariance of \(\mathcal{A} \) in \(\mathcal{B} \). In the sequel we are concerned with algebras of pseudo-differential type operators. Additional assumptions on the topological structure of the embedding \(\mathcal{A} \hookrightarrow \mathcal{B} \) are crucial to model \(C^\infty \)-phenomena in an abstract sense.

Definition 2. (cf. [7], [8], [10]) Let \(\mathcal{B} \) be a unital \(C^* \)-algebra and \(A \subset B \) a symmetric subalgebra (i.e. \(a \in A \implies a^* \in A \)). Then \(A \) is called a \(\Psi^* \)-algebra in \(B \) if:

- \(A \) is spectrally invariant in \(B \) with \(e \in A \)
- \(A \) carries a Fréchet topology \(\tau_A \) and the embedding \((A, \tau_A) \hookrightarrow \mathcal{B} \) is continuous.

\(A \) is said to be submultiplicative if \(\tau_A \) is generated by a sequence of submultiplicative semi-norms \(\{ q_j \}_{j \in \mathbb{N}} \), i.e. \(q_j(xy) \leq q_j(x) \cdot q_j(y) \) and \(q_j(e) = 1 \) for \(j \in \mathbb{N} \).

If \(A \) is a \(\Psi^* \)-algebra, then \(A^{-1} \) is open and the inversion \(A^{-1} \ni x \mapsto x^{-1} \in A \) is continuous. There is a local version of spectral invariance: Let \(\varphi : A \to B \) be a morphism of algebras where \(\varphi(e) = e \) in the case \(A \) is unital.

Definition 3. (cf. [7], [8], [10]) \(A \) is said to be locally spectral invariant with respect to \(\varphi \), if there is \(\varepsilon > 0 \) such that:
\[
\{ e + \varphi(x) \}^{-1} \in Ce + \varphi(A)
\]
for all \(x \in A \) with \(\| \varphi(x) \|_B \leq \varepsilon \). \(A \) is called locally spectral invariant if \(\varphi = id \).

Let \(\varphi : A \to B \) be one-to-one and assume that \(A \) is unital. In case where

- \(\varphi(A) \) is dense in \(B \)
- \(B \) is a \(C^* \)-algebra and \(\varphi(A) \) is symmetric in \(B \)

it is well-known (cf. [10]) that \(A \) is locally spectral invariant with respect to \(\varphi \) if and only if \(\varphi^{-1}(B^{-1}) = A^{-1} \) (which in the first place seems to be a stronger condition).

Note that the open mapping theorem can be interpreted as a theorem on spectral invariance. Here we recall other model cases. Given Hilbert spaces \(H, V \) we denote by \(\mathcal{L}(H, V) \) the bounded operators from \(H \) to \(V \). As usual we write \(\mathcal{L}(H) := \mathcal{L}(H, H) \).

(a): Let \(M \) be a compact manifold and \(\mathcal{P} \) an elliptic pseudo-differential operator of order \(m \geq 0 \) on \(M \) invertible as an (unbounded) operators on \(L^2(M) \) - the space of square integrable 1/2-densities on \(M \). Then \(\mathcal{P}^{-1} \) is a pseudo-differential operator again.

(b): Let \(0 \leq \delta \leq \rho \leq 1 \) and \(\delta < 1 \). The Hoermander classes \(\Psi^0_{\rho, \delta} \) of 0-order pseudo-differential operators form a \(\Psi^* \)-algebra via the embedding \(\Psi^0_{\rho, \delta} \hookrightarrow \mathcal{L}(L^2(\mathbb{R}^n)) \), cf. [9].
(c): An element $a \in \mathcal{L}(H)$ is called relatively invertible in $\mathcal{L}(H)$ iff its range $R(a)$ is closed, i.e. there is a Moore-Penrose inverse $\hat{a} \in \mathcal{L}(H)$ s.t. $\hat{a}a = a$ and $\hat{a}a\hat{a} = \hat{a}$. In this case $\lambda = 0$ is an isolated point of the spectrum $\sigma(a^*a)$ of a^*a. The orthogonal projection p onto the kernel $N(a^*a) = N(a)$ is given via functional calculus by:

$$p := \frac{1}{2\pi i} \int_{\gamma} (z \cdot \text{id}_H - a^*a)^{-1} dz$$

where γ is a circle around $0 \in \mathbb{C}$ not intersecting $\sigma(a^*a)$ and $\hat{a} = (p + a^*a)^{-1}a^*$. If \mathcal{A} is symmetric and CuHFC, then $a \in \mathcal{A} \implies \hat{a} \in \mathcal{A}$. The relatively invertible elements in a Ψ^*-algebra form a so called locally rational Fréchet manifold.

3. Commutator methods

Typically, proving spectral invariance resp. the Ψ^*-property in explicit examples is not an easy problem. However, there are several procedures to construct Ψ^*-algebras in an a-priori way. Here we recall a commutator method which is a flexible tool and allows to define Ψ^*-algebras with prescribed properties. Let $S(\mathbb{R}^n)$ be the Schwartz space and $S' (\mathbb{R}^n)$ denotes the tempered distributions. Moreover, with $s \in \mathbb{R}$ we write H^s for the sth-Sobolev space. We start with a structural result which gives a characterization of the Hoermander classes above by commutator conditions, cf. [5].

Let M be a linear space and $L(M)$ the algebra of all linear operators on M. For $X, B \in L(M)$ the commutator

$$\text{ad}[X](B) := [X, B] = XB - BX$$

defines a derivation on $L(M)$. Generalizing (1) to a finite system $S_{m+1} := [X_1, \cdots, X_{m+1}]$ of operators $X_j \in L(M)$ we inductively define the iterated commutators:

$$\text{ad}[S_{m+1}](B) := \text{ad}[X_{m+1} \left(\text{ad}[S_m](B) \right)] .$$

Furthermore, we shortly write $\text{ad}^l[X](B) := \text{ad}[X, \cdots, X](B)$ (l times). In particular, for $\alpha, \beta \in \mathbb{N}_0^n$ and with $D_{x_j} := -i\frac{\partial}{\partial x_j}$ and $M = S(\mathbb{R}^n)$:

$$\text{ad}^\alpha[-ix] \text{ad}^\beta[D_{x_j}] := \text{ad}^{\alpha_1}[\cdots -ix_1 \cdots] \cdots \text{ad}^{\alpha_n}[\cdots -ix_n] \text{ad}^{\beta_1}[D_{x_1}] \cdots \text{ad}^{\beta_n}[D_{x_n}].$$

The following characterization of the Hoermander classes has been used to prove their spectral invariance:

Theorem 1. (Beals, [5]) Let $0 \leq \delta \leq \rho \leq 1$ and $\delta < 1$. $B \in S(\mathbb{R}^n) \rightarrow S'(\mathbb{R}^n)$ be a continuous operator. Then, $B \in \Psi_{p, \delta}^\rho$ if and only if the commutators

$$\text{ad}[-ix]^\alpha \text{ad}[D_{x_j}]^\beta(B) : H^{s-\rho|\alpha|+\delta|\beta|} \rightarrow H^s$$

are well-defined as continuous extensions from $S(\mathbb{R}^n)$ for all $\alpha, \beta \in \mathbb{N}_0^n$ and $s \in \mathbb{R}$.

We demonstrate the commutator method by constructing localized versions of the Hoermander classes which are spectrally invariant or even define Ψ^*-algebras in $\mathcal{L}(L^2(\mathbb{R}^n))$. We start recalling some definitions, all proofs can be found in [1].
Fix \(m \in \mathbb{R} \) and \(0 \leq \delta \leq \rho \leq 1, \delta < 1 \). To \(a \) in the symbol class \(S_{\rho,\delta}^m \) one associates the pseudo-differential operator \(R_a \) on \(S(\mathbb{R}^n) \) in the sense of [9]. As usual we write
\[
\Psi_{\rho,\delta}^m := \left\{ R_a : a \in S_{\rho,\delta}^m \right\} \quad \text{and} \quad \Psi^{-\infty} := \bigcap_{m \in \mathbb{N}} \Psi_{\rho,\delta}^m
\]
where \(\Psi^{-\infty} \) is independent from \(\rho \) and \(\delta \). For \(s \in \mathbb{R} \) an operator \(R_a \in \Psi_{\rho,\delta}^m \) continuously extends to \(\tilde{R}_a : H^{s+m} \to H^s \). Moreover, for \(P_j \in \Psi_{\rho,\delta}^{m_j}, j = 1, 2 \) one has:
\[
P_1 P_2 \in \Psi_{\rho,\delta}^{m_1+m_2} \quad \text{and} \quad [P_1, P_2] \in \Psi_{\rho,\delta}^{m_1+m_2-(\rho-\delta)}.
\] (3)

Let \(D(\mathbb{R}^n) \) be the space of smooth complex valued functions on \(\mathbb{R}^n \) having compact support. With the Euclidean norm \(\| \cdot \| \) on \(\mathbb{R}^n \) we write \(\lambda(x, \xi) := \sqrt{1 + \| \xi \|^2} \) and we define the operator \(\Lambda^s := R_{\lambda^s} \in \Psi_{1,0}^s \). To \(\Phi \in D(\mathbb{R}^n) \) we assign:
\[
\Lambda_{\Phi} := \text{Id} + \Phi \cdot \Lambda^{\frac{1}{2}} \cdot \Phi \in \Psi_{1,0}^\frac{1}{2}
\] (4)
where in our notation \(\Phi \) is identified with the multiplication by \(\Phi \). It can be shown that (4) admits a self-adjoint extension (Friedrichs-extension) with domain \(D(\Lambda_{\Phi}) \) of definition. A localized Sobolev space is now defined by:
\[
H^s_{\Phi} := \text{completion of } D(\Lambda_{\Phi}^{2s}) \text{ w.r.t. } \| \Lambda_{\Phi}^{2s} \cdot \|_{L^2(\mathbb{R}^n)}.
\]

For \(k \in \mathbb{N}_0 \) the embeddings \(H^s_{\Phi} \hookrightarrow H^s_{\Phi} \) are well-defined and continuous. We set:
- \(H^s_{\Phi} := \bigcap_{s \in \mathbb{R}} H^s_{\Phi} \) (projective topology)
- \(H^{-\infty}_{\Phi} := \bigcup_{s \in \mathbb{R}} H^s_{\Phi} \) (inductive topology).

Proposition 1. Let \(s \in \mathbb{R} \) and \(\Phi \in D(\mathbb{R}^n) \). For \(R \in \Psi_{\rho,\delta}^0 \) the commutators w.r.t. the multiplication by \(\Phi \) resp. \(\Lambda^s \) are of class:
\[
[\Phi, R] \in \Psi_{\rho,\delta}^{-\rho} \quad \text{and} \quad [\Lambda^s, R] \in \Psi_{\rho,\delta}^{-s(1-\delta)}.
\] (5)

Note that (5) shows an order (=the upper index) improvement of commutators in special cases even if \(R \) belongs to an exotic class \(\Psi_{\rho,\rho}^0 \) (whereas the general formula (3) does not). Having our applications in mind we are concerned with the case \(\rho = \delta = \frac{1}{2} \).

Corollary 1. Let \(R \in \Psi_{\frac{1}{2},\frac{1}{2}}^0 \). Then \(\text{ad}^l[\Lambda_{\Phi}](R) \in \Psi_{\frac{1}{2},\frac{1}{2}}^0 \) holds for all orders \(l \in \mathbb{N}_0 \). In particular, \(\text{ad}^l[\Lambda_{\Phi}](R) \) has a continuous extensions to \(L^2(\mathbb{R}^n) \).

Proof: It is sufficient to prove \([\Lambda_{\Phi}, R] \in \Psi_{\frac{1}{2},\frac{1}{2}}^0 \). By Proposition 1 and using the inclusion \(\Psi_{1,0}^s \subset \Psi_{\frac{1}{2},\frac{1}{2}}^s \), cf. [9]:
\[
[\Lambda_{\Phi}, R] = \Phi \Lambda_{\Phi}^\frac{1}{2} [\Phi, R] + \Phi \left[\Lambda_{\Phi}^\frac{1}{2}, R \right] \Phi + [\Phi, R] \Lambda_{\Phi}^\frac{1}{2} \Phi.
\]
The second assertion follows by a result due to Calderon/Vaillancourt in [4]. □
Fix $\Phi \in \mathcal{D}(\mathbb{R}^n)$ with $\Phi \geq 0$ and consider the operator algebra:

$$\mathcal{A}_\Phi := \left\{ a \in \mathcal{L}(L^2(\mathbb{R}^n)) : a(H^\infty_\Phi) \subset H^\infty_\Phi, \quad \forall j \in \mathbb{N}_0, \exists \alpha_j > 0 \right\}$$

$$\| \text{ad}^j [\Lambda_\Phi] (a) f \|_{L^2(\mathbb{R}^n)} \leq \alpha_j \cdot \| f \|_{L^2(\mathbb{R}^n)}, \quad \forall f \in H^\infty_\Phi \right\}. \quad (6)$$

To state some properties of \mathcal{A}_Φ we define the operators of order shift $\rho > 0$:

$$\bigcap_{t \in \mathbb{R}} \mathcal{L}(H^\rho_\Phi, H^{-\rho}_\Phi) := \left\{ a \in \mathcal{L}(H^\infty_\Phi) : \text{extends to } a_t \in \mathcal{L}(H^\rho_\Phi, H^{-\rho}_\Phi) \quad \forall t \right\}. \quad (6)$$

Note that (6) defines Fréchet spaces under the norms $\| a \|_t := \| a_t \|_{\mathcal{L}(H^\rho_\Phi, H^{-\rho}_\Phi)}$. In the case $\rho = 0$ it can be checked that (6) leads to a submultiplicative operator algebra.

By Corollary 1 the inclusion

$$\Psi^0_{1/2, 1/2} \subset \mathcal{A}_\Phi \subset \bigcap_{t \in \mathbb{R}} \mathcal{L}(H^1_\Phi, H^1_\Phi) \quad (7)$$

holds and for all bounded measurable functions $f : \mathbb{R}^n \to \mathbb{C}$ which are smooth in a neighbourhood of supp Φ the multiplication M_f belongs to \mathcal{A}_Φ. In such a sense \mathcal{A}_Φ can be seen as a localized version of $\Psi^0_{1/2, 1/2}$. To refine the algebras we can pose additional commutator conditions (prescribed properties): Let $U \subset \mathbb{R}^n$ be a bounded open set and assume that $\Phi \equiv 1$ on U. For finitely many vector fields

$$\mathcal{W} := \left\{ Y_1, \cdots, Y_k \right\} \subset \Psi^1_{1,0}$$

which are supported in U consider the sub-algebra of \mathcal{A}_Φ defined by:

$$\Psi_{\mathcal{W}}[\mathcal{A}_\Phi] := \left\{ a \in \mathcal{A}_\Phi : \text{ad}[Y_{i_1}, \cdots, Y_{i_m}] (a) \in \bigcap_{s \in \mathbb{Z}} \mathcal{L}(H^s_\Phi, H^{s-\frac{m}{2}}_\Phi) \quad \text{for } Y_{i_t} \in \mathcal{W} \right\}. \quad (7)$$

Then \mathcal{A}_Φ in (7) can be replaced by any of the smaller algebras $\Psi_{\mathcal{W}}[\mathcal{A}_\Phi]$. Moreover, Theorem 2. The algebra $\Psi_{\mathcal{W}}[\mathcal{A}_\Phi]$ is spectrally invariant in $\mathcal{L}(L^2(\mathbb{R}^n))$. In case all vector fields $Y_j \in \mathcal{W}$ have real valued coefficients it defines a Ψ^*-algebra in $\mathcal{L}(L^2(\mathbb{R}^n))$.

4. Application to Toeplitz operators

For $n \in \mathbb{N}$ consider the Euclidean open unit ball $\mathbb{B}_{n+1} \subset \mathbb{C}^{n+1}$. The upper half space is defined by:

$$\mathcal{H}_+ := \left\{ (z, z_{n+1}) \in \mathbb{C}^{n+1} : z \in \mathbb{C}^n \text{ and } \text{Im } z_{n+1} > \| z \|^2 \right\}$$

where $\| \cdot \|$ denotes the usual Euclidean norm on \mathbb{C}^n. It is known - cf. [13] - that there is a biholomorphic function $F : \mathcal{H}_+ \to \mathbb{B}_{n+1}$ which induces a map of boundaries:

$$\tilde{F} : \partial \mathcal{H}_+ \to \partial \mathbb{B}_{n+1} \setminus \{ \text{south pole} \}.$$

Consider the Heisenberg group \mathbb{H}^{2n+1} of real dimension $2n + 1$. There is a simply transitive group homomorphism $g : \mathbb{H}^{2n+1} \to \text{Aut}(\mathcal{H}_+)$ which is induced by translations $g(x)$ along $x \in \mathbb{H}^{2n+1}$ such that the boundary $\partial \mathcal{H}_+$ is preserved under $g(x)$. Via the translation of $0 \in \partial \mathcal{H}_+$ one can identify:

$$\partial \mathcal{H}_+ \cong \mathbb{H}^{2n+1} \cong \mathbb{R}^{2n+1} \quad (8)$$
and we equip $\partial \mathcal{H}_+$ through (8) with the left invariant Haar measure β on \mathbb{H}^{2n+1}. Here β coincides with the $2n+1$-dimensional Lebesgue measure. The Hardy space $H^2(\partial \mathcal{H}_+)$ consists of all $f \in L^2(\partial \mathcal{H}_+,\beta)$ having holomorphic extensions to \mathcal{H}_+. Let

$$\tilde{P} : L^2(\partial \mathcal{H}_+,\beta) \rightarrow H^2(\partial \mathcal{H}_+)$$

be the orthogonal projection. Then \tilde{P} corresponds via (8) to a (singular) convolution operator $P \in \mathcal{L}(L^2(\mathbb{H}^{2n+1}))$. In the framework of pseudo-differential operators P can be described as follows:

Theorem 3. (A. Nagel, E.M. Stein, cf. [11]) Let $\varphi, \psi \in \mathcal{D}(\mathbb{H}^{2n+1})$, then $\varphi P \psi$ is a pseudo-differential operator of exotic type $\Psi^{0}_{\frac{1}{2},\frac{1}{2}}$.

Theorem 3 can be generalized to arbitrary strictly pseudo-convex domains instead of \mathbb{B}_{n+1}, cf. [11]. Let $h \in L^\infty(\mathbb{H}^{2n+1})$ be a bounded measurable function, then we call

$$T_h := PM_h \in \mathcal{L}(L^2(\mathbb{H}^{2n+1}))$$

a Toeplitz operator with symbol h. Let $U \subset \mathbb{H}^{2n+1}$ be the open set in the construction of the algebras $\Psi_W[A_\Phi]$ in section 3 and $U \subset V \subset \mathbb{H}^{2n+1}$ (V open). According to Theorem 3 and our remarks before we have:

Theorem 4. Let both $f \in L^2(\mathbb{H}^{2n+1})$ and the symbol h be smooth in V. Then the same is true for $T_h f$. Let $\varphi \in \mathcal{D}(\mathbb{H}^{2n+1})$ such that $\text{supp} \varphi \subset U$, then $\varphi T_h \in \Psi_W[A_\Phi]$.

Acknowledgment: The author wishes to thank Prof. B. Gramsch who has drawn his attention to the results in [11] for many useful hints and discussions. Moreover, he acknowledges financial support through the organizers of 15th ICFIDCAA. This note has been partially supported by the Grant-in-aid Scientific Research (C) No. 17540202, Japan Society for the Promotion of Science.

References

(Wolfram Bauer) Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan

E-mail address: BauerWolfram@web.de