ROBIN FUNCTIONS FOR COMPLEX MANIFOLDS AND APPLICATIONS

KANG-TAE KIM, NORMAN LEVENBERG, AND HIROSHI YAMAGUCHI

ABSTRACT. We give a variational formula of the Robin constant $\lambda(t)$ for a family of domains $D(t)$ in a complex manifold M where t is a complex parameter t. As an application we give a necessary and sufficient condition that a pseudoconvex domain with C^∞ boundary in a complex homogeneous space fails to be a Stein domain. Using this condition we classify such domains in the complex flag space and in special Hopf manifolds. Proofs may be found in arXiv 0710.1091.

1. INTRODUCTION

In [8] we analyzed the second variation of the Robin function associated to a smooth variation of domains in \mathbb{C}^n for $n \geq 2$; i.e., $D = \bigcup_{t \in B(t, D(t))} B \times \mathbb{C}^n$ is a variation of domains $D(t)$ in \mathbb{C}^n each containing a fixed point z_0 and with $\partial D(t)$ of class C^∞ for $t \in B := \{ t \in \mathbb{C} : |t| < \rho \}$. For such t and for $z \in D(t)$ we let $g(t, z)$ be the \mathbb{R}^{2n}-Green function for the domain $D(t)$ with pole at z_0; i.e., $g(t, z)$ is harmonic in $D(t) \setminus \{z_0\}$, $g(t, z) = 0$ for $z \in \partial D(t)$, and $g(t, z) - \frac{1}{|z - z_0|^{2n-2}}$ is harmonic near z_0. We call

$$\lambda(t) := \lim_{z \to z_0} \left[g(t, z) - \frac{1}{|z - z_0|^{2n-2}} \right]$$

the Robin constant for $(D(t), z_0)$. Then

$$\frac{\partial^2 \lambda}{\partial t \partial \overline{t}}(t) = -c_n \int_{\partial D(t)} k_2(t, z)|\nabla_z g|^2 dS_z - 4c_n \int_{D(t)} \sum_{a=1}^{n} \left| \frac{\partial^2 g}{\partial t \partial \overline{z}_a} \right|^2 dV_z. \quad (1)$$

Here, $c_n = \frac{1}{(n-1)! \Omega_n}$ is a positive dimensional constant where Ω_n is the area of the unit sphere in \mathbb{C}^n, dS_z and dV_z are the Euclidean area element on $\partial D(t)$ and volume element on $D(t)$, $\nabla_z g = (\frac{\partial g}{\partial z_1}, \ldots, \frac{\partial g}{\partial z_n})$ and

$$k_2(t, z) := ||\nabla_z \psi||^{-3} \left[\frac{\partial^2 \psi}{\partial t \partial \overline{t}} ||\nabla_z \psi||^2 - 2\Re \left\{ \frac{\partial \psi}{\partial t} \sum_{a=1}^{n} \frac{\partial \psi}{\partial \overline{z}_a} \frac{\partial^2 \psi}{\partial \overline{z}_a} \right\} + \left| \frac{\partial \psi}{\partial t} \right|^2 \Delta_z \psi \right]$$

is the Levi-curvature of ∂D at (t, z). The function $\psi(t, z)$ is a defining function for D. In particular, if D is pseudoconvex at a point (t, z) with $z \in \partial D(t)$, it follows that $k_2(t, z) \geq 0$ so that $-\lambda(t)$ is subharmonic in B. Given a bounded domain D in \mathbb{C}^n, we let $\Lambda(z)$ be the Robin constant for (D, z). We call $\Lambda(z)$ the Robin function for D. Then the above formula yields part of the following result (cf., [8]).

2000 Mathematics Subject Classification. Primary 32M05, Secondary 32E10, 32U10, 32M05.

Key words and phrases. pseudoconvex, homogeneous spaces, Levi problem, Robin constants.
Theorem 1. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with C^∞ boundary. Then $\log(-\Lambda(z))$ and $-\Lambda(z)$ are real-analytic, strictly plurisubharmonic exhaustion functions for D.

This theorem is striking in the the sense that, whereas in one complex variable, any harmonic function is locally the real part of a holomorphic function, in several complex variables (\mathbb{C}^n with $n \geq 2$), harmonic functions are not closely related to holomorphic functions. On the other hand, it is known in the theory of functions of several complex variables that the plurisubharmonic functions $s(z)$, i.e., $[\frac{\partial^2 s}{\partial z_i \partial \overline{z}_j}]_{i,j} \geq 0$, have an intimate relation with holomorphic functions. The Robin function $\Lambda(\zeta)$ on D, which is constructed from a harmonic function, the Green function, has the property that $-\Lambda(\zeta)$ is a plurisubharmonic function on D. Thus it is important to generalize the variational formula (1) to complex manifolds (see [9]).

We now study a generalization of the second variation formula (1) to complex manifolds M equipped with a Hermitian metric ds^2 and a smooth, nonnegative function c. Our purpose is that, with this added flexibility, we are able to give a criterion for a bounded, smoothly bounded, pseudoconvex domain D in a complex homogeneous space to be Stein (Theorem 5). In particular, we are able to do the following:

1. Describe concretely all the non-Stein pseudoconvex domains D in the complex torus of Grauert (section 5).
2. Give a description of all the non-Stein pseudoconvex domains D in the special Hopf manifolds \mathbb{H}_n (section 7).
3. Give a description of all the non-Stein pseudoconvex domains D in the complex flag spaces \mathcal{F}_n (section 8).

The metric ds^2 and the function c give rise to a c-Green function and c-Robin constant associated to an open set $D \subset M$ and a point $p_0 \in D$. We then take a variation $D = \bigcup_{t \in B} \{D(t) \subset B \times M$ of domains $D(t)$ in M each containing a fixed point p_0 and define a c-Robin function $\lambda(t)$. The precise definitions of these notions and the new variation formula (2) will be given in the next section. In section 3 we impose a natural condition (see (3)) on the metric ds^2 which will be useful for applications. Kähler metrics, in particular, satisfy (3). After discussing conditions which insure that the function $-\lambda$ is subharmonic, we will use (2) to develop a "rigidity lemma" (Lemma 1) which will imply, if $-\lambda$ is not strictly subharmonic, the existence of a nonvanishing, holomorphic vector field on M with certain properties (Corollary 2). This will be a key tool to obtain the purpose stated above.

The majority of this paper is the same as in [7] with minor changes.

2. The variation formula.

Our general set-up is this: let M be an n-dimensional complex manifold (compact or not) equipped with a Hermitian metric $ds^2 = \sum_{a,b=1}^{n} g_{ab} dz_a \otimes d\overline{z}_b$ and let $\omega := i \sum_{a,b=1}^{n} g_{ab} dz_a \wedge d\overline{z}_b$ be the associated real $(1,1)$ form. As in the introduction, we take $n \geq 2$. We write $g^{\overline{a}b} := (g_{ab})^{-1}$ for the elements of the inverse matrix to (g_{ab}) and
$G := \det(g_{ab})$. We denote by Δ the Laplacian associated to ds^2,

$$
\Delta u = -2\left[\sum_{a,b=1}^{n} g^{\bar{a}a} \frac{\partial^2 u}{\partial \bar{z}_b \partial z_a} + \frac{1}{2} \sum_{a,b=1}^{n} \left(\frac{1}{G} \frac{\partial (Gg^{\bar{a}a})}{\partial z_a} \frac{\partial u}{\partial \bar{z}_b} + \frac{1}{G} \frac{\partial (Gg^{\bar{a}b})}{\partial \bar{z}_a} \frac{\partial u}{\partial z_b} \right) \right].
$$

Given a nonnegative C^∞ function $c = c(z)$ on M, we call a C^∞ function u on an open set $D \subset M$ c-harmonic on D if $\Delta u + cu = 0$ on D. Choosing local coordinates near a fixed point $p_0 \in M$ and a coordinate neighborhood U of p_0 such that $[g_{ab}(p_0)]_{a,b=1,...,n} = [\delta_{ab}]_{a,b=1,...,n}$, the Laplacian Δ corresponds to a second-order elliptic operator Δ in \mathbb{C}^n. In particular, we can find a c-harmonic function Q_0 in $U \setminus \{p_0\}$ satisfying

$$
\lim_{p \to p_0} Q_0(p)d(p,p_0)^{2n-2} = 1
$$

where $d(p,p_0)$ is the geodesic distance between p and p_0 with respect to the metric ds^2. We call Q_0 a fundamental solution for Δ and c at p_0. Fixing p_0 in a smoothly bounded domain $D \subset M$ and fixing a fundamental solution Q_0, the c-Green function g for (D,p_0) is the c-harmonic function in $D \setminus \{p_0\}$ satisfying $g = 0$ on ∂D (is continuous up to ∂D) with $g(p) - Q_0(p)$ regular at p_0. The c-Green function always and uniquely exists (cf., [10]) and is nonnegative on D. Then

$$
\lambda := \lim_{p \to p_0} [g(p) - Q_0(p)]
$$

is called the c-Robin constant for (D,p_0). Thus we have

$$
g(p) = Q_0(p) + \lambda + h(p)
$$

for p near p_0, where $h(p_0) = 0$. In case M is compact, if $c \equiv 0$ on M, then the c-Green function g for (M,p_0) exists and is positive on M, hence the c-Robin constant is finite. But if $c \equiv 0$ on M, a c-harmonic function is harmonic and cannot attain its minimum; thus, in this case, $g(z) = +\infty$ on M (cf., [10]). In this case we set $\lambda = +\infty$.

Now let $D = \cup_{t \in B} (t, D(t)) \subset B \times M$ be a C^∞ variation of domains $D(t)$ in M each containing a fixed point p_0 and with $\partial D(t)$ of class C^∞ for $t \in B$. This means that there exists $\psi(t,z)$ which is C^∞ in a neighborhood $N \subset B \times M$ of $\{t,z\} : t \in B, z \in \partial D(t)$, negative in $N \cap \{(t,z) : t \in B, z \in D(t)\}$, and for each $t \in B, z \in \partial D(t)$, we require that $\psi(t,z) = 0$ and $\frac{\partial \psi}{\partial z_i}(t,z) \neq 0$ for some $i = 1, ..., n$. We call $\psi(t,z)$ a defining function for D. Assume that $B \times \{p_0\} \subset D$. Let $g(t,z)$ be the c-Green function for $(D(t),p_0)$ and $\lambda(t)$ the corresponding c-Robin constant. The hypothesis that D be a C^∞ variation implies that for each $t \in B$, the c-Green function $g(t,z)$ extends of class C^∞ beyond $\partial D(t)$; this follows from the general theory of partial differential equations.

Our formulas are the following:

$$
\frac{\partial \lambda}{\partial t}(t) = -c_n \int_{\partial D(t)} k_1(t,z) \sum_{a,b=1}^{n} (g^{\bar{a}b} \frac{\partial g}{\partial z_b} \frac{\partial g}{\partial z_a})d\sigma_z,
$$

$$
\frac{\partial^2 \lambda}{\partial t \partial \bar{t}}(t) = -c_n \int_{\partial D(t)} k_2(t,z) \sum_{a,b=1}^{n} (g^{\bar{a}b} \frac{\partial g}{\partial \bar{z}_a} \frac{\partial g}{\partial \bar{z}_b})d\sigma_z
$$

$$
- \frac{c_n}{2n-2} \left\{ \left(\frac{\partial g}{\partial t} \right)^2 \bigg|_{D(t)} + \frac{1}{2} \left(\sqrt{c} \frac{\partial g}{\partial t} \right)^2 \bigg|_{D(t)} + \frac{1}{2} \Re \int_{D(0)} \frac{\partial g}{\partial t} \left[\frac{1}{i} \partial * \omega \wedge \frac{\partial g}{\partial t} + \frac{1}{i} \frac{\partial g}{\partial \bar{t}} \right] \right\},
$$

(2)
where $d\sigma_z$ is the area element on $\partial D(t)$ with respect to the Hermitian metric and

$$k_1(t, z) := \left[\sum_{a, b=1}^n g^{ab} \frac{\partial \psi}{\partial z_a} \frac{\partial \psi}{\partial z_b} \right]^{-1/2} \frac{\partial \psi}{\partial t},$$

$$k_2(t, z) := \left[\sum_{a, b=1}^n g^{ab} \frac{\partial \psi}{\partial z_a} \frac{\partial \psi}{\partial z_b} \right]^{-3/2} \times$$

$$\left[\frac{\partial^2 \psi}{\partial t \partial \overline{t}} \left(\sum_{a, b=1}^n g^{ab} \frac{\partial \psi}{\partial z_a} \frac{\partial \psi}{\partial z_b} \right) - 2 \Re \left\{ \frac{\partial \psi}{\partial t} \left(\sum_{a, b=1}^n g^{ab} \frac{\partial \psi}{\partial z_a} \frac{\partial^2 \psi}{\partial z_b \partial \overline{t}} \right) \right\} - \frac{1}{2} \left| \frac{\partial \psi}{\partial t} \right|^2 \Delta_z \psi \right],$$

$\psi(t, z)$ being a defining function for D. Here, $k_i(t, z)$ ($i = 1, 2$) is a real-valued function for $(t, z) \in \partial D$ which is independent of both the choice of defining function for D and of the choice of local parameter z in the manifold M. We call $k_2(t, z)$ the Levi scalar curvature with respect to the metric ds^2.

3. Subharmonicity of $-\lambda$.

We impose the following condition on the Hermitian metric ds^2 on M:

$$\partial \star \omega = 0 \quad \text{on} \quad M. \quad (3)$$

A Kähler metric ds^2 on M (i.e., $d\omega = 0$) satisfies (3). Further we note that if D is pseudoconvex in $B \times M$, then $k_2(t, z) \geq 0$ on ∂D. Thus by the variational formula (2) we have

Theorem 2. Assume that ds^2 satisfies condition (3) and D is pseudoconvex in $B \times M$. Then:

$$\frac{\partial^2 \lambda}{\partial t \partial \overline{t}}(t) \leq -\frac{c_n}{2^{n-1}} ||\nabla^c \frac{\partial g}{\partial t}||^2_{D(t)}.$$

Hence $-\lambda(t)$ is subharmonic on B.

4. Rigidity.

We continue under the same hypotheses: M is an n-dimensional complex manifold equipped with a Hermitian metric ds^2; $D = \cup_{t \in B}(t, D(t)) \subset B \times M$ is a C^∞ variation of domains $D(t)$ in M each containing a fixed point p_0 and with $\partial D(t)$ of class C^∞ for $t \in B$; and c is a nonnegative C^∞ function on M.

Throughout this section we will assume that

1. ds^2 satisfies condition (3) on M;
2. D is pseudoconvex in $B \times M$.
3. $c(z) > 0$ on M.

By Theorem 2 we have

Lemma 1 (Rigidity). If there exists $t_0 \in B$ at which $\frac{\partial^2 \lambda}{\partial t \partial \overline{t}}(t_0) = 0$, then $\frac{\partial g}{\partial t}(t_0, z) \equiv 0$ for $z \in D(t_0)$.

Corollary 1 (Trivial variation). If $\lambda(t)$ is harmonic in B, then $D = B \times D(0)$. Namely, the domain $D(t)$ does not move in M with $t \in B$.
We next consider the following set-up. Let $F : B \times M \to M$ be a holomorphically varying, one-parameter family of automorphisms of M; i.e., $F(t, z)$ is holomorphic in (t, z) with $\frac{\partial F}{\partial t} \neq 0$ for $(t, z) \in B \times M$, and, for each $t \in B$, the mapping $F_t : M \to M$ via $F_t(z) := F(t, z)$ is an automorphism of M. Then the mapping $T : B \times M \to B \times M$ defined as

$$T(t, z) = (t, w) := (t, F(t, z))$$

provides a fiber-wise automorphism of M; i.e., for each $t \in B$, the map $w = F(t, z)$ is an automorphism of M.

We put $z = F^{-1}(t, w) = \Phi(t, w) = (\phi_1(t, w), \ldots, \phi_n(t, w))$. Then for each $t \in B$,

$$\Theta_t(z) := \sum_{k=1}^n \frac{\partial \phi_k}{\partial t}(t, F(t, z)) \frac{\partial}{\partial z_k}.$$

becomes a non-vanishing holomorphic vector field on M.

Fix a pseudoconvex domain $D \Subset M$ and let $\mathcal{D} := T(B \times D)$. This is a variation of pseudoconvex domains $D(t) = F(t, D)$ in the image space $B \times M$ of T. Assume there exists a common point w_0 in each domain $D(t)$, $t \in B$. Let $g(t, w)$ and $\lambda(t)$ denote the c-Green function and c-Robin constant of $(D(t), w_0)$. We obtain the following fundamental result, utilizing the rigidity lemma, Lemma 1.

Corollary 2.

$$\frac{\partial^2 \lambda}{\partial t \partial \bar{t}}(t_0) = 0$$

at some $t_0 \in B$ if and only if $\Theta_{t_0}(z)$ is tangential on ∂D; i.e., the entire integral curve $I(z_0)$ associated to Θ for any initial point $z_0 \in \partial D$ lies on ∂D.

5. **Complex Lie Groups.**

We apply Corollary 2 to the study of complex Lie groups. Let M be a complex Lie group of complex dimension n with identity e. We always take M to be connected. By [6], there always exists a Kähler metric on M; thus we conclude that M is equipped with a Hermitian metric ds^2 satisfying condition (3). We fix such a Hermitian metric and a strictly positive C^∞ function $c = c(z)$ on M throughout this section. We denote by \mathfrak{X} the complex Lie algebra which consists of all left-invariant holomorphic vector fields on M.

Let $D \Subset M$ be a pseudoconvex domain in M with C^∞ boundary. Fix $X \in \mathfrak{X} \setminus \{0\}$; $\zeta \in D$ and $B = \{t \in \mathbb{C} : |t| < \rho\}$ with $\rho > 0$ sufficiently small so that $\zeta \exp tX \in D$ for $t \in B$. We consider the holomorphic map $T : B \times M \to B \times M$ defined as

$$T(t, z) = (t, w) := (t, F(t, z)) \quad \text{where} \quad F(t, z) := z(\zeta \exp tX)^{-1}.$$

As in Corollary 2, we write $z = \Phi(t, w)$ if $w = F(t, z) = z(\zeta \exp tX)^{-1}$ so that $\Phi(t, w) = w(\zeta \exp tX)$. Let $\mathcal{D} = T(B \times D)$. Fixing a value of $t \in B$, we will write

$$D(t) := F(t, D) = D \cdot (\zeta \exp tX)^{-1}.$$

Note for $t \in B$ fixed, $F(t, \cdot) \in \text{Aut}(M)$. Furthermore, since we have $e \in D(t)$ for each $t \in B$, we can thus construct the c-Robin constant $\lambda(t)$ for $(D(t), e)$; and we have the following.
Lemma 2. Suppose $\frac{\partial^2 \lambda}{\partial t^2}(t_0) = 0$ for some $t_0 \in B$. Then the integral curve $z \exp tX, t \in \mathbb{C}$, with initial value z, of the holomorphic vector field X satisfies, for $A = D, \partial D$, or \overline{D},

1. $z \in A$ implies $\{z \exp tX : t \in \mathbb{C}\} \subseteq A$;
2. $A \cdot z^{-1} = A \cdot (z \exp tX)^{-1}$ for all $t \in \mathbb{C}$ and all $z \in M$.

We make another observation based on Lemma 2. Consider the following automorphism T of $M \times M$: $T(z, w) = (z, \lambda) := (z, wz^{-1})$. Let $D \subseteq M$ be a domain with C^∞ boundary and let

$$D := T(D \times D) = \bigcup_{z \in D} (z, D(z))$$

where

$$D(z) := D \cdot z^{-1} = \{wz^{-1} : w \in D\}.$$

This is a variation of domains $D(z)$ in M with parameter space $D \subset M$. Note that $e \in D(z)$ for all $z \in D$. Let $G(z, W)$ be the c-Green function for $(D(z), e)$ and $\Lambda(z)$ the c-Robin constant. Then $\Lambda(z)$ is a C^∞ function on D, called the c-\textbf{Robin function} for D.

We use Lemma 2 to prove the following result, which will be crucial in all that follows.

Lemma 3. Suppose D is pseudoconvex. Then $-\Lambda(z)$ is a plurisubharmonic exhaustion function for D. Furthermore, assume that $-\Lambda(z)$ is not strictly plurisubharmonic at some point z_0 in D. We put

$$\mathfrak{X}_{z_0} = \{X \in \mathfrak{X} : \{z_0 \exp tX : t \in \mathbb{C}\} \subseteq D\}.$$

Then

1. \mathfrak{X}_{z_0} is a complex Lie subalgebra in \mathfrak{X} with $1 \leq \dim \mathfrak{X}_{z_0} \leq n - 1$; Thus we have the integral manifold (i.e., the corresponding connected Lie subgroup) Σ_{z_0} in M passing through z_0;
2. For each $z \in D$ we have $z\Sigma_{z_0} \subseteq D$.

We remark that the conclusion of the lemma implies, in particular, that D is not Stein. We now address the following question: for a complex Lie group M, when is a pseudoconvex domain $D \subseteq M$ with C^∞ boundary Stein? An answer is provided in the following result.

Theorem 3. Let $D \subseteq M$ be a pseudoconvex domain with smooth boundary which is not Stein. Then

I. there exists a unique connected complex Lie subgroup H of M such that

1. $1 \leq \dim H \leq n - 1$;
2. D is foliated by cosets of H; $D = \bigcup_{z \in D} zH$ with $zH \subseteq D$;
3. any holomorphic curve $\ell := \{z = z(t) \in D : t \in \mathbb{C}\}$ with $\ell \in D$ is necessarily contained in some coset zH in D.

II. Furthermore, if H is closed in M and $\pi : M \rightarrow M/H$ is the canonical projection, then H is a complex torus and there exists a Stein domain $D_0 \subseteq M/H$ with smooth boundary such that $D = \pi^{-1}(D_0)$.

Remark 1. In Theorem 3 if H is not closed in M the closure H of H in M is a closed real Lie subgroup of M whose real dimension m is less than $2n$. In this case, we have the real Lie subalgebra $\mathfrak{r}_0 \subset \mathfrak{X}$ corresponding to H, and the projection $\pi : M \rightarrow M/H,$
where M/H is a real manifold of dimension $2n - m$. From properties 1. and 2. in Lemma 2, H is a compact real submanifold in D and D is foliated by right cosets of H. Furthermore, $D_0 := \pi(D)$ is a relatively compact domain with smooth boundary in M/H and $D = \pi^{-1}(D_0)$.

We next discuss a concrete example of complex Lie groups M as in Theorem 3 or Remark 1. Grauert gave an example of a complex Lie group M and a pseudoconvex domain $D \subset M$ with smooth boundary which is not Stein. Moreover, in his example, D admits no nonconstant holomorphic functions. This domain lies in a complex torus T of complex dimension 2. Our next goal is to describe all pseudoconvex subdomains D of T with smooth boundary which are not Stein (cf., O. Suzuki [13], T. Ohsawa [12]). The key tools we will use are Theorem 3 and Remark 1. We begin with real 4-dimensional Euclidean space \mathbb{R}^4 with coordinates $x = (x_1, x_2, x_3, x_4)$. Let

$$e_1 = (1, 0, 0, 0), \ e_2 = (0, 1, 0, 0), \ e_3 = (0, 0, 1, 0), \ e_4 = (0, 0, 0, 0)$$

in \mathbb{R}^4,

where ξ is an irrational number. Initially we consider the real 4-dimensional torus: $T := \mathbb{R}^4/[e_1, e_2, e_3, e_4] = T_1 \times T_2$, where $T_1 = \mathbb{R}[x_1, x_2]/[(1, 0), (0, 1)]$ and $T_2 = \mathbb{R}[x_3, x_4]/[(1, 0), (0, \xi)]$. Following Grauert, we impose the complex structure $z = x_1 + ix_3, \ w = x_2 + ix_4$ on T. Then T, equipped with this complex structure, becomes a complex torus T of complex dimension 2. Note that e_1, e_2, e_3, e_4 correspond to $(1, 0), (0, 1), (i, 0), (i\xi, i)$ in \mathbb{C}^2, and the complex Lie algebra of the complex Lie group T is $\mathfrak{t} = \{\alpha \frac{\partial}{\partial z} + \beta \frac{\partial}{\partial w} : \alpha, \beta \in \mathbb{C}\}$. Grauert showed that $D = D(c_1, c_2) := \{c_1 < \Re z < c_2 \} \subset T$, where $0 \leq c_1 < c_2 < 1$, is a pseudoconvex domain which admits no nonconstant holomorphic functions.

Let $D \subset T$ be a pseudoconvex domain with smooth boundary which is not Stein. We consider the c-Robin function $\Lambda(z, w)$ on D, where $c \equiv 1$ on T. By Theorem 3 there exists $X = \alpha \frac{\partial}{\partial z} + \beta \frac{\partial}{\partial w} \in \mathfrak{t}$ with $(\alpha, \beta) \neq (0, 0)$ such that $D(\exp tX)^{-1} = D, \ t \in \mathbb{C}$. Since the integral curve $\exp tX, \ t \in \mathbb{C}$ for X passing through 0 in T is the curve $(z, w) = (at, \beta t) \in \mathbb{C}_2 \times \mathbb{C}_w, \ t \in \mathbb{C}$, the equality $D(\exp tX)^{-1} = D$ for $t \in \mathbb{C}$ simply means that $D + (at, \beta t) = D$ for $t \in \mathbb{C}$. Since dim $T = 2$, the Lie subalgebra \mathfrak{t}_0 associated to D from Theorem 3 and the corresponding Lie subgroup H are of the form

$$\mathfrak{t}_0 = \{cX \in \mathfrak{t} : c \in \mathbb{C}\}, \ H = \{(at, \beta t) \in T : t \in \mathbb{C}\}.$$

We have three cases: (1) $\alpha = 0; \ (2) \ \beta = 0; \ (3) \ \alpha, \ \beta \neq 0$. In the cases (1) and (2) it is not difficult to determine the form of the domain D. The specific example of Grauert is case (1). In case (3) we write $\beta/\alpha = a + ib$ where a, b are real. If $b = 0$ it is again straightforward to determine the form of D. The situation when $b \neq 0$ is the most general and most interesting case to determine the form of D. In this case the integral curve $\exp tX, \ t \in \mathbb{C}$ starting at $(0, 0)$ can be written in the form

$$S : x_2 + ix_4 = (a + ib)(x_1 + ix_3) \quad \text{in } \mathbb{R}^4. \quad (4)$$

Then we have the following:

1. (i) There exist six integers $m, n, m', n' \in \mathbb{Z}, n', p, q \in \mathbb{Z}^+$ where $(m, n) = \pm 1, (m', n') = \pm 1, (p, q) = 1$, such that a, b can be written in the following form:

$$a = \frac{p_1 p_2 + q_1 q_2}{p_1^2 + q_1^2}, \quad b = \frac{p_2 q_1 - p_1 q_2}{p_1^2 + q_1^2}, \quad (5)$$
where
\[M' := m' + n' \xi, \quad p_1 := M'p, \quad p_2 := n'p, \quad q_1 := mq, \quad q_2 := nq. \] (6)

1. (ii) The integral curve \(S \) in (4) contains the following two points:
\[(q(m, n), p(M', n')), \quad (p(1/n, 0), q(1/n', 0) + \eta(M', n')) \]
where \(\eta = \frac{p_1^2 + q_2^2}{p_2q_1 - p_1q_2} \) is irrational.

2. (i) The closure \(\bar{H} \) of \(H \) in \(T \) is a closed real Lie subgroup of \(T \) whose corresponding real Lie subalgebra \(\mathfrak{t}_0 \) of \(X \) is generated by
\[\left\{ \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2}, \frac{p_1}{x_1} \frac{\partial}{\partial x_3} + p_2 \frac{\partial}{\partial x_4}, \right. \\
\left. \frac{p_2q_1 - p_1q_2}{x_1} \frac{\partial}{\partial x_3} + (p_1p_2 + q_1q_2) \frac{\partial}{\partial x_3} + (p_2^2 + q_2^2) \frac{\partial}{\partial x_4} \right\}. \]

We proceed to give a more precise description of \(\bar{H} \). Assuming 1., let
\[L_1 : \{ (x_1, x_2) : mx_2 = nx_1 \} = \{ t(m, n) : t \in \mathbb{R} \} \text{ in } \mathbb{R}_{x_1} \times \mathbb{R}_{x_2}; \]
\[L_2 : \{ (x_3, x_4) : M'x_4 = n'x_3 \} = \{ t(M', n') : t \in \mathbb{R} \} \text{ in } \mathbb{R}_{x_3} \times \mathbb{R}_{x_4}. \]

Since \(m, n \in \mathbb{Z} \), \(L_1 \) defines a simple closed curve \(l_1 \) in the real torus \(T_1 \), and from (6), specifically, from the relation \(M' = m' + n' \xi \), \(L_2 \) defines a simple closed curve \(l_2 \) in the real torus \(T_2 \). Given \(0 \leq s \leq 1 \), define
\[L_1(s) := L_1 + ps(1/n, 0) = \{ t(m, n) + ps(1/n, 0) : t \in \mathbb{R} \} \text{ in } \mathbb{R}_{x_1} \times \mathbb{R}_{x_2}; \]
\[L_2(s) := L_2 + qs(1/n', 0) = \{ t(M', n') + qs(1/n', 0) : t \in \mathbb{R} \} \text{ in } \mathbb{R}_{x_3} \times \mathbb{R}_{x_4}. \]

Then \(L_1(s) \) and \(L_2(s) \) also define simple closed curves \(l_1(s) \) and \(l_2(s) \) in \(T_1 \) and \(T_2 \); \(l_1(s) \) is a curve in \(T_1 \), which, in \(\mathbb{R}_{x_1} \times \mathbb{R}_{x_2} \), is parallel to \(l_1 \) translated by the vector \(ps(1/n, 0) \). Similarly, \(l_2(s) \) is parallel to \(l_2 \) in \(\mathbb{R}_{x_3} \times \mathbb{R}_{x_4} \) translated by the vector \(qs(1/n', 0) \). We have \(l_i = l_i(0) = l_i(1) \) for \(i = 1, 2 \) and
\[(l_1(s') \times l_2(s')) \cap (l_1(s'') \times l_2(s'')) = \emptyset \text{ if } s' \neq s''. \]

2. (ii) The set \(\Sigma := \bigcup_{0 \leq s \leq 1} l_1(s) \times l_2(s) \) is a real, 3-dimensional compact submanifold of \(T \), and \(\bar{H} = \Sigma \). Given \(0 \leq t \leq 1 \), if we define \(\Sigma(t) := (t, 0; 0, 0) + \bar{H} = (t, 0; 0, 0) + \Sigma \), a coset of \(\bar{H} \), then \(\Sigma(0) = \Sigma(1) = \Sigma = \bar{H} \) and \(\Sigma(t') \cap \Sigma(t'') = \emptyset \) in \(T \) if \(t' \neq t'' \).

3. We have \(T/\bar{H} = \mathbb{R}/[1] = S^1 \) and \(D = \bigcup_{0 \leq t_1 < t_2 \leq 1} \Sigma(t) \), where \(0 \leq t_1 < t_2 < 1 \).

We also have a converse statement.

4. Given integers \(m, n, m' \in \mathbb{Z}; \ n', p, q \in \mathbb{Z}^+ \) with \((m, n) = \pm 1 \), \((m', n') = \pm 1 \), \((p, q) = 1 \), we can find \(a, b \in \mathbb{R} \) satisfying (5) and (6) to construct a pseudoconvex domain \(D \subset T \) with smooth boundary which is not Stein. This domain has the property that \(D(p \exp tX)^{-1} = D \) for all \(t \in \mathbb{C} \) and for all \(p \in D \) where \(X \) is a nonzero holomorphic vector field. The Lie subgroup \(H \) of \(T \) corresponding to the Lie subalgebra \(\mathfrak{X}_0 = \{ cX \in X : c \in \mathbb{C} \} \) is equal to \(\{ w = (a + bi)z \} \). Moreover, every holomorphic function on \(D \) is constant.
Remark 2. Let ℓ_1^* be a conjugate closed curve for ℓ_1 in T_1, i.e., take $m_1, n_1 \in \mathbb{Z}$ such that $m_1 n - mn_1 = 1$; thus the vertices $(0, 0), (m, n)$ and (m_1, n_1) determine a fundamental domain of T_1. The curve ℓ_1^* corresponds to the segment joining $(0, 0)$ and (m_1, n_1) in T_1. Similarly, let ℓ_2^* be a conjugate closed curve for ℓ_2 in T_2 determined by the relation $m_1 n' - m'n_1 = 1$. The following figure gives a visual interpretation of the Lie subgroup H of \mathfrak{T} and its closure \overline{H}. The set $T_1^{p,q}$ is the pq-sheeted torus over T_1 winding p times along ℓ_1^* and q times along l_1, while $T_2^{q,p}$ is the pq-sheeted torus over T_2 winding q times along ℓ_2^* and p times along l_2.

$$ F(qm + pm_1, qn + pn_1) $$

In this section, we let M be an n-dimensional complex space with the property that there exists a connected complex Lie group $G \subset \text{Aut} M$ of complex dimension $m \geq n$ which acts transitively on M. We write e for the identity element of G and \mathfrak{X} for the Lie algebra which consists of all left-invariant holomorphic vector fields on G. For a fixed $z \in M$, let

$$ H_z := \{ g \in G : g(z) = z \} $$

be the isotropy subgroup of G for z. We let G/H_z denote the set of all left cosets gH_z. This quotient space G/H_z has the structure of a complex n-dimensional manifold such that if we let $\pi_z : G \to G/H_z$ be the coset mapping $\pi_z(g) = gH_z$ and we let $\psi_z : G \to M$ be the mapping $\psi_z(g) = g(z)$, then there exists an isomorphism $\alpha_z : G/H_z \to M$ such that $\alpha_z \circ \pi_z = \psi_z$ in G.

Let $D \subset M$ be a domain with C^∞ boundary in M. For $z \in D$, we let

$$ D(z) := \{ g \in G : g(z) \in D \} = \psi_z^{-1}(D). $$

so that $D(z)$ contains e and is a possibly unbounded and possibly disconnected domain in G. Thus $D(z)$ is a set of cosets modulo H_z in G.

We set $H'_z(D'(z))$ the connected component of $H_z(D(z))$ which contains e so that $D'(z) \supset H'_z$. We also set $H'(z) = D'(z) \cap H_z$. Then:

Proposition 1. We have, for $z \in D$,

1. $D = \{g(z) \in M : g \in D'(z)\}$.
2. $D'(z)h \subset D'(z)$ for $h \in H'(z)$.
3. $D'(h(z)) = D'(z)h^{-1}$ for $h \in D'(z)$.
4. $H'(z)$ is a closed Lie subgroup of H_z.

We define $D' := \cup_{z \in D} (z, D'(z)) \subset D \times G$. This is a variation of domains $D'(z) \subset G$ with parameter $z \in D$:

$$D' : z \in D \rightarrow D'(z) \subset G.$$

Lemma 4. D' is locally holomorphically trivial variations.

Fix a Kähler metric ds^2 on G (such a metric exists by [6]) and let c be a strictly positive C^∞ function on G. We consider the c-Robin constant $\lambda(z)$ for $(D'(z), e)$ in case when $D'(z)$ is not bounded by the usual exhaustion method in the case of an unbounded connected domain $D(z)$ (see, for example, Chapter IV in [2]). Using standard methods from potential theory, from Lemma 4 we see that $\lambda(z)$ is smooth in D. Furthermore, since ∂D is smooth in G and since $z \in D \rightarrow \zeta \in \partial D$ implies $\partial D'(z) \rightarrow e$, we have $\lambda(z) \rightarrow -\infty$ as $z \rightarrow \partial D$.

Then we have

Theorem 4. If $D \Subset M$ is a smoothly bounded pseudoconvex domain, then the c-Robin function $-\lambda(z)$ for D is a plurisubharmonic exhaustion function for D.

We next discuss conditions under which $-\lambda(z)$ is strictly plurisubharmonic on D. Suppose not; i.e., suppose there exists a point $z_0 \in D$ at which the complex Hessian

$$\left[\frac{\partial^2 (-\lambda)}{\partial z_j \partial \bar{z}_k}(z_0)\right]$$

has a zero eigenvalue so that $\left[\frac{\partial^2 (-\lambda(z_0+at))}{\partial t \partial \bar{t}}\right]_{t=0} = 0$ for some direction $a \in \mathbb{C}^n$.
(a \neq 0). By a standard result in the theory of homogeneous spaces we find an \(X \) in \(\mathfrak{X} \) such that the tangent vector of \(\exp tX(z_0) \) at \(t = 0 \) in \(M \) is equal to \(a \); and thus \(\left[\frac{\partial^2 \lambda(\exp tX(z_0))}{\partial t \partial t} \right]_{t=0} = 0. \)

Note that \(\exp tX \in D'(z_0) \) for \(|t| < \rho \) if \(\rho \) is sufficiently small. It follows from 3. in Proposition 1 that

\[
D'(\exp tX(z_0)) = D'(z_0) \cdot (\exp tX)^{-1}.
\]

We thus apply Lemma 2 to \(G, D'(z_0) \), and \(\zeta \) corresponding to \(M, D \), and \(\zeta \) in the lemma — note that the domain \(D \) in the lemma is bounded, but the argument is valid for unbounded \(D \) — to immediately obtain the following facts: if we assume \(g \in D'(z_0) \), then

a. the integral curve \(\{ \exp tX : t \in \mathbb{C} \} \) for \(X \) is contained in \(D'(z_0) \).

b. \(D'(z_0) \cdot g^{-1} = D'(z_0) \cdot (\exp tX)^{-1} \) for all \(t \in \mathbb{C} \); i.e., \(D'(g(z_0)) = D'(g \exp tX(z_0)) \) for all \(t \in \mathbb{C} \).

c. \(\lambda(g(z_0)) = \lambda(g \exp tX(z_0)) \) for all \(t \in \mathbb{C} \).

d. \(\{ g \exp tX(z_0) : t \in \mathbb{C} \} \) is relatively compact in \(D \).

We consider the following subsets of \(\mathfrak{X} \):

\[
g_{z_0} := \text{the Lie subalgebra of } G \text{ corresponding to } H'_{z_0};
\]

\[
\mathfrak{X}_{z_0} := \{ X \in \mathfrak{X} : X \text{ satisfies } \left[\frac{\partial^2 \lambda(\exp tX(z_0))}{\partial t \partial t} \right]_{t=0} = 0 \}.
\]

By using b. inductively we have: For \(\nu \in \mathbb{Z}^+ \) and \(g_i, h_i \in H'_{z_0} \); \(X_i \in \mathfrak{X}_{z_0} \); \(t_i \in \mathbb{C}, i = 1, 2, \ldots, \nu \) and \(g \in D'(z_0) \), it holds

(i) \(g \left[\prod_{i=1}^{\nu} g_i(\exp t_i X_i)h_i^{-1} \right] \in D'(z_0) \);

(ii) \(\lambda(g \left[\prod_{i=1}^{\nu} (g_i(\exp t_i X_i)h_i^{-1}) \right](z_0)) = \lambda(g(z_0)) \).

This formulas imply the following fundamental result.

Lemma 5.

1. \(\mathfrak{X}_{z_0} \) is a complex Lie subalgebra of \(\mathfrak{X} \) such that \(g_{z_0} \subseteq \mathfrak{X}_{z_0} \subseteq \mathfrak{X} \).
2. Let \(X \in \mathfrak{X}_{z_0} \) and \(g \in H'_{z_0} \). Then any \(Y \in \mathfrak{X} \) which satisfies

\[
\left[\frac{d X Y(z_0)}{dt} \right]_{t=0} = \left[\frac{d g \exp tX(z_0)}{dt} \right]_{t=0}
\]

belongs to \(\mathfrak{X}_{z_0} \).

3. For \(z_1 \in D \) we have \(\dim \mathfrak{X}_{z_1} = \dim \mathfrak{X}_{z_0} \).

We write \(\Sigma_{z_0} \) for the integral manifold for \(\mathfrak{X}_{z_0} \) in \(G \) and put \(\sigma_{z_0} = \psi_{z_0}(\Sigma_{z_0}) \subset M \); i.e.,

\[
\Sigma_{z_0} = \{ \prod_{j=1}^{\nu} \exp t_j A_j : \nu \in \mathbb{Z}^+, t_j \in \mathbb{C}, A_j \in \mathfrak{Y} \cup \mathfrak{Z} \}
\]

\[
\sigma_{z_0} = \Sigma_{z_0}(z_0) = \{ g(z_0) \in M : g \in \Sigma_{z_0} \}.
\]

We thus have \(\Sigma_{z_0} \subset D'(z_0) \) and \(\sigma_{z_0} \subset D \). By Frobenius theorem the Lie group \(G \) is foliated by \(g\Sigma_{z_0}, g \in G \).

To state the main theorem we introduce the following terminology. Let \(\sigma \) be a subset of \(M \). We call \(\sigma \) a \(\mu \)-dimensional non-singular, generalized (f-generalized) analytic set in \(M \) if, for any point \(z \in \sigma \) (\(z \in M \)), there exists a neighborhood \(V \) of \(z \) in \(M \) such that each connected component of \(V \cap \sigma \) is a \(\mu \)-dimensional non-singular analytic set in
V. Moreover, if \(\sigma \) admits no non-constant bounded plurisubharmonic functions, then \(\sigma \) is said to be parabolic. Further, for \(A, B \subset G \), we set \(AB = \{ ab \in G : a \in A, b \in B \} \).

Then we have the main theorem in this paper:

Theorem 5. Let \(M \) be a complex homogeneous space of finite dimension \(n \) and let \(G \) be a connected complex Lie transformation group of finite dimension \(m \geq n \) which acts transitively on \(M \). Let \(D \) be a pseudoconvex domain in \(M \) with smooth boundary. Assume that \(D \) is not Stein. Fix \(z_0 \in D \) and consider \(\Sigma_{z_0} \) defined by (7). Then:

a. The subset \(\sigma_{z_0} = \Sigma_{z_0}(z_0) \) of \(M \) is a parabolic \(m_1 \)-dimensional (where \(1 \leq m_1 \leq n \)) non-singular \(f \)-generalized analytic set in \(M \) passing through \(z_0 \) with the following properties:

(o) \(\sigma_{z_0} \subset D; \Sigma_{z_0}H'(z_0) = D'(z_0) \cap \text{Aut} \sigma_{z_0}; \Sigma_{z_0}H'(z_0) \) is a Lie subgroup of \(G \) which acts transitively on \(\sigma_{z_0} \); and

\[\sigma_{z_0} \approx \Sigma_{z_0}H'(z_0)/H'(z_0). \]

(i) There exists a domain \(K \) with \(D \subset K \subset M \) such that \(D(K) \) is foliated by the sets \(g\sigma_{z_0} \), \(g \in K'(z_0) \) \((g \in D'(z_0))\) and each such set \(g\sigma_{z_0} \) is relatively compact in \(K(D) \):

\[K = \bigcup_{g \in K'(z_0)} g\sigma_{z_0} \quad \text{and} \quad D = \bigcup_{g \in D'(z_0)} g\sigma_{z_0}. \]

(ii) Any dimensional parabolic non-singular generalized analytic set \(\sigma \) in \(M \) which is relatively compact in \(D \) is contained in a set \(g\sigma_{z_0} \) for some \(g \in D(z_0) \).

b. Assume that \(\sigma_{z_0} \) is closed in \(M \). Then

(o) \(\sigma_{z_0} \) is a compact manifold containd in \(D; \Sigma_{z_0}H'(z_0) = D'(z_0) \cap \text{Aut} \sigma_{z_0}; \Sigma_{z_0}H'(z_0) \) is a Lie subgroup of \(G \) which acts transitively on \(\sigma_{z_0} \); and

\[\sigma_{z_0} \approx \Sigma_{z_0}H'(z_0)/H'(z_0). \]

(i) There exists a complex manifold \(K_0 \) and a holomorphic map \(\pi_0 : K \hookrightarrow K_0 \) such that \(\pi_0^{-1}(\zeta) \approx \sigma_{z_0} \) (as complex manifolds) for each \(\zeta \in K_0 \); moreover, there exists a Stein domain \(D_0 \subset K_0 \) with smooth boundary such that \(D = \pi_0^{-1}(D_0) \).

c. In the case when \(H_{z_0} \) is connected in \(G \) or more generally in the case when \(H_{z_0} \subset \Sigma_{z_0} \), we can take \(K = M \) in a. and b. In particular, in this situation, if, in addition \(\sigma_{z_0} \) is closed in \(M \) (i.e., b. holds), we have \(K_0 = G/\Sigma_{z_0} \) and \(\pi_0 : M = G/H_{z_0} \hookrightarrow K_0 = G/\Sigma_{z_0} \).

We note that the converse is clearly true; i.e., if a pseudoconvex domain \(D \) in \(M \) with \(C^\infty \) boundary satisfies (o) in a., then \(D \) is not Stein.

7. Special Hopf manifolds

The second special case in c. described in Theorem 5 occurs when \(M \) is a special Hopf manifold. We let \((\mathbb{C}^n)^* := \mathbb{C}^n \setminus \{0\} \) and we fix \(\alpha \in \mathbb{C} \) with \(|\alpha| \neq 1 \). For \(z, z' \in (\mathbb{C}^n)^* \), we define the following equivalence relation in \((\mathbb{C}^n)^* \): \(z \sim w \) iff \(w = \alpha^k z \) for some integer \(k \). We consider the following space:

\[H_n = (\mathbb{C}^n)^*/\sim, \]
this is an \(n\)-dimensional compact manifold. The space \(\mathbb{H}_n\) is called a special Hopf mani-
fold. We write \([z] \in \mathbb{H}_n\) to denote the equivalence class of a point \(z = (z_1, \ldots, z_n) \in (\mathbb{C}^n)^*\). In case \(n = 1\), \(\mathbb{H}_1\) is the usual one-dimensional complex torus \(T_\alpha\). The space \(\mathbb{H}_n\) clearly has the following property:

Proposition 2.

1. The group \(GL(n, \mathbb{C})\) is a Lie transformation group of \(\mathbb{H}_n\) and acts transitively on \(\mathbb{H}_n\); i.e., \(\mathbb{H}_n\), equipped with the Lie group \(GL(n, \mathbb{C})\), is a homogeneous space.
2. We have the canonical projection \(\pi_0 : [z_1, \ldots, z_n] \in \mathbb{H}_n \mapsto [z_1 : \ldots : z_n] \in \mathbb{P}^{n-1}\) such that \(\pi_0^{-1}(\zeta) \approx T_\alpha\) for each \(\zeta \in \mathbb{P}^{n-1}\).

We write \(O := [(1, 0, \ldots, 0)] \in \mathbb{H}_n\) and call \(O\) the base point of \(\mathbb{H}_n\). Then the isotropy subgroup \(H_0\) of \(GL(n, \mathbb{C})\) for \(O\) is

\[
H_0 = \left\{ \begin{pmatrix} \alpha^k & (*) \\ \vdots & A \\ 0 \end{pmatrix} \in GL(n, \mathbb{C}) : k \in \mathbb{Z}, (\ast) \in \mathbb{C}^{n-1}, \det A \neq 0 \right\},
\]

which is closed but not connected in \(GL(n, \mathbb{C})\). We let \(H'_0\) denote the connected com-
ponent of \(H_0\) which contains the identity \(I_n\) in \(GL(n, \mathbb{C})\), i.e.,

\[
H'_0 = \left\{ \begin{pmatrix} 1 & (*) \\ \vdots & A \\ 0 \end{pmatrix} \in GL(n, \mathbb{C}) : (\ast) \in \mathbb{C}^{n-1}, \det A \neq 0 \right\}.
\]

Therefore, \(\mathbb{H}_n \approx GL(n, \mathbb{C})/H_0 = \{gH_0 : g \in GL(n, \mathbb{C})\}\). To be precise, let \(g = (g_{ij})_{i,j} \in GL(n, \mathbb{C})\). Let \(g := (g_{11}, \ldots, g_{n1}) \in (\mathbb{C}^n)^*\) denote the first column vector of \(g\). Then the mapping

\[
\alpha_0 : gH_0 \in GL(n, \mathbb{C})/H_0 \to g(O) = [g] \in \mathbb{H}_n
\]

is bijective. For local coordinates in a neighborhood \(V\) of the base point \(O\) we can take

\[
\begin{pmatrix}
1 + t_1 \\
t_2 & 1 \\
\vdots & \ddots \\
t_n & \end{pmatrix}, \quad |t_i| < \rho, \quad i = 1, \ldots, n,
\]

where the missing entries are all 0. Equivalently, let \(U := \{t = (t_1, \ldots, t_n) \in \mathbb{C}^n : |t_i| < \rho\}\) where the base point \(O\) of \(\mathbb{H}_n\) corresponds to the origin 0 of \(\mathbb{C}^n\). That is, let \(g = (g_{ij})_{ij} \in GL(n, \mathbb{C})\) be close to the identity \(I_n\). Corresponding to \(gH_0 \in \mathbb{H}_n\) the point \(t(g) := (g_{11} - 1, g_{21}, \ldots, g_{n1}) \in \mathbb{C}^n\), is close to \((0, 0, \ldots, 0)\). We have (i) if \(g_1H_0 \neq g_2H_0\) for \(g_1, g_2 \in V\), then \(t(g_1) \neq t(g_2)\); (ii) given \(t' \in U\), we can find \(g \in GL(n, \mathbb{C})\) close to \(I_n\) with \(t(g) = t'\). We call the local coordinates \(t\) at \(O\) the standard local coordinates at \(O\) in \(\mathbb{H}_n\).

We consider the Lie algebra \(\mathfrak{x}\) consisting of all left-invariant holomorphic vector fields \(X\) on \(GL(n, \mathbb{C})\). We identify \(\mathfrak{x}\) with \(M_n(\mathbb{C})\), the set of all \(n \times n\) square matrices, as
follows: to \(X = (\lambda_{ij}) \in M_n(\mathbb{C}) \) we associate a left-invariant holomorphic vector field \(v_X \) on \(GL(n, \mathbb{C}) \) via, for \(g = (x_{ij}) \in GL(n, \mathbb{C}) \),

\[
 v_X(g) := \sum_{i,j=1}^n \lambda_{ij} X_{ij}(g), \quad \text{where} \quad X_{ij}(g) = \sum_{k=1}^n x_{ki} \frac{\partial}{\partial x_{kj}}.
\]

(8)

Hence we identify the vector field \(v_X \) on \(GL(n, \mathbb{C}) \) with the matrix \(X = (\lambda_{ij}) \) in \(M_n(\mathbb{C}) \) as additive groups. The integral curve \(C_X \) for \(v_X \) with initial value \(I_n \) is given by

\[
 C_X = \{ \exp tX \in GL(n, \mathbb{C}) : t \in \mathbb{C} \},
\]

and the integral curve of \(v_X \) with initial value \(g \in GL(n, \mathbb{C}) \) is given by \(g C_X \in GL(n, \mathbb{C}) \).

We let \(g_0 \) denote the corresponding Lie subalgebra for \(H_0' \), so that

\[
 g_0 = \left\{ \begin{pmatrix} 0 & \vdots & A \\ 0 & \vvdots & \vdots \\ \vdots & \vdots & \end{pmatrix} \in M_n(\mathbb{C}) : A \in M_{n,n-1}(\mathbb{C}) \right\},
\]

where \(M_{n,n-1}(\mathbb{C}) \) denotes the set of all \(n \times (n-1) \)-matrices. We have

\[
 H_0' = \{ \prod_{i=1}^\nu t_i X_i \in GL(n, \mathbb{C}) : \nu \in \mathbb{Z}^+, \ t_i \in \mathbb{C}, \ X_i \in g_0 \}.
\]

Then we have

Theorem 6. Let \(D \subseteq \mathbb{H}_n \) be a pseudoconvex domain with smooth boundary which is not Stein. Then there exists a Stein domain \(D_0 \) in \(\mathbb{P}^{n-1} \) with smooth boundary such that \(D = \pi_0^{-1}(D_0) \).

Proof. We may assume \(D \) contains the base point \(O \). Following Theorem 5 for such domains \(D \) in a homogeneous space, we fix a Kähler metric \(ds^2 \) on \(G = GL(n, \mathbb{C}) \) and a strictly positive \(C^\infty \) function \(c \) on \(G \) and we consider the \(c \)-Robin function \(\lambda([z]) \) for \(D \).

Define the following subset of the Lie algebra \(\mathfrak{x} = M_n(\mathbb{C}) \):

\[
 \mathfrak{x}_0 = \{ X \in \mathfrak{x} : \frac{\partial^2 \lambda(\exp tX(O))}{\partial t \partial \bar{t}}|_{t=0} = 0 \}.
\]

Under our assumptions for \(D \) we showed that \(\mathfrak{x}_0 \) is a Lie subalgebra of \(\mathfrak{x} \) with

\[
 g_0 \subseteq \mathfrak{x}_0 \subseteq \mathfrak{x}.
\]

By the elementary calculus such Lie subalgebra \(\mathfrak{x}_0 \) satisfying (9) must be

\[
 \mathfrak{x}_0 = \left\{ \begin{pmatrix} x \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix} : x \in \mathbb{C}, \ (\ast) \in M_{n,n-1}(\mathbb{C}) \right\},
\]

This implies the connected Lie subgroup \(\Sigma_0 \) correspondint to \(\mathfrak{x}_0 \) is:

\[
 \Sigma_0 = \left\{ \begin{pmatrix} a \\ 0 \\ \vdots \\ 0 \end{pmatrix} : a \in \mathbb{C}^*; \ (\ast) \in \mathbb{C}^{n-1}, \ A \in GL(n-1, \mathbb{C}) \right\},
\]
so that Σ_0 is closed in $GL(n, \mathbb{C})$ with $H_0 \subset \Sigma_0$, and hence Σ_0 is in case c. in Theorem 5. Moreover, writing tO for the transpose of the row vector $O = [(1, 0, \ldots, 0)]$.

$$
\sigma_0 := \psi_0(\Sigma_0) = \Sigma_0(tO) = \{ (a, 0, \ldots, 0) : a \in \mathbb{C}^* \},
$$

which coincides with the torus T_n. Since $GL(n, \mathbb{C})/\Sigma_0 = \mathbb{P}^{n-1}$ and the projection $gH_0 \mapsto g\Sigma_{z_0}$ from \mathbb{H}_n to \mathbb{P}^{n-1} coincides with π_0 in 2. of Proposition 2, Theorem 6 follows from c. in Theorem 5. \square

8. Flag space

In this section, we apply the first case in c. in Theorem 5 to the flag space \mathcal{F}_n to determine all pseudoconvex domains $D \subset \mathcal{F}_n$ with smooth boundary which are not Stein (see Theorem 7). There are few known results on the Levi problem in \mathcal{F}_n (cf., Y-T. Siu [11], A. Hirschowitz [3], K. Adachi [1]) so far. By definition, the flag space \mathcal{F}_n is the set of all nested sequences

$$
z : \{0\} \subset F_1 \subset \ldots \subset F_{n-1} \subset \mathbb{C}^n, \quad (10)
$$

where $F_i, \; i = 1, \ldots, n - 1$ is an i-dimensional vector subspace of \mathbb{C}^n. We describe the structure of \mathcal{F}_n as a homogeneous space. Given $A = (a_{ij}) \in GL(n, \mathbb{C})$ we shall define an isomorphism A of \mathcal{F}_n. Consider the linear transformation of \mathbb{C}^n given by

$$
A : \begin{pmatrix}
Z_1 \\
\vdots \\
Z_n
\end{pmatrix} = \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & & \ddots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix} \begin{pmatrix}
z_1 \\
\vdots \\
z_n
\end{pmatrix}.
$$

For $z \in \mathcal{F}_n$ as in (10), we then define $A(z) \in \mathcal{F}_n$ via

$$
A(z) : \{0\} \subset A(F_1) \subset A(F_2) \subset A(F_{n-1}) \subset \mathbb{C}^n.
$$

In this way $GL(n, \mathbb{C})$ acts transitively on \mathcal{F}_n; i.e., \mathcal{F}_n is a homogeneous space with Lie transformation group $GL(n, \mathbb{C})$. We fix the following point O in \mathcal{F}_n:

$$
O : \{0\} \subset F_1^0 \subset F_2^0 \subset \cdots \subset F_{n-1}^0 \subset \mathbb{C}^n,
$$

where

$$
F_i^0 : z_{i+1} = \cdots = z_n = 0, \quad i = 1, \ldots, n - 1.
$$

We call O the base point of \mathcal{F}_n. The isotropy subgroup H_0 of $GL(n, \mathbb{C})$ for the point O is the set of all upper triangular non-singular matrices:

$$
H_0 = \left\{ \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{pmatrix} \in GL(n, \mathbb{C}) \right\}.
$$

In particular, H_0 is connected in $GL(n, \mathbb{C})$ and $\dim H_0 = \frac{n(n+1)}{2}$. Since $\mathcal{F}_n \cong GL(n, \mathbb{C})/H_0$, the flag space \mathcal{F}_n is a compact manifold with $\dim \mathcal{F}_n = N := \frac{n(n-1)}{2}$. By the identification (8) of the Lie algebra \mathfrak{g} consisting of all left-invariant holomorphic vector fields
on $GL(n, \mathbb{C})$ and the set $M_n(\mathbb{C})$ of all n square matrices n square, the Lie subalgebra \mathfrak{g}_0 which corresponds to H_0 is

$$ \mathfrak{g}_0 = \left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{C}) \right\}. $$

We consider the generalized flag spaces $\mathcal{F}^\mathfrak{m}_n$. Let

$$ \mathfrak{m} := (m_1, \ldots, m_\mu) $$

be a fixed, finite sequence of positive integers with $1 \leq m_j \leq n$ and $m_1 + \cdots + m_\mu = n$. Set $n_j := m_1 + m_2 + \cdots + m_j$ for $j = 1, \ldots, \mu$, and consider a nested sequence ζ of vector spaces in \mathbb{C}^n

$$ \zeta : \{0\} \subset S_{n_1} \subset S_{n_2} \subset \cdots \subset S_{n_{\mu-1}} \subset \mathbb{C}^n, $$

where S_{n_j}, $j = 1, \ldots, \mu - 1$, is an n_j-dimensional vector space. Let $\mathcal{F}^\mathfrak{m}_n$ denote the set of all such sequences ζ. We call $\mathcal{F}^\mathfrak{m}_n$ the \mathfrak{m}-flag space in \mathbb{C}^n. In particular, $\mathcal{F}^\mathfrak{m}_n$ coincides with \mathcal{F}_n if $\mu = n$. Clearly $GL(n, \mathbb{C})$ acts transitively on $\mathcal{F}^\mathfrak{m}_n$. We fix the following point in $\mathcal{F}^\mathfrak{m}_n$ as the base point:

$$ O^\mathfrak{m} : \quad S_{n_j} = \{ z_{n_{j+1}} = \cdots = z_n = 0 \}, \quad j = 1, \ldots, \mu - 1. $$

Thus the isotropy subgroup $H_0^\mathfrak{m}$ of $GL(n, \mathbb{C})$ for $O^\mathfrak{m}$ is the set of all matrices

$$ \begin{pmatrix} h_1 & (*) & (*) \\ 0 & h_j & (*) \\ 0 & 0 & h_\mu \end{pmatrix} $$

where $h_j \in GL(m_j, \mathbb{C})$, $j = 1, \ldots, \mu$. Hence

(i) $\mathcal{F}^\mathfrak{m}_n \cong GL(n, \mathbb{C})/H_0^\mathfrak{m}$;

(ii) $H_0 \subset H_0^\mathfrak{m}$ and $H_0^\mathfrak{m}/H_0 \cong \mathcal{F}_{m_1} \times \cdots \times \mathcal{F}_{m_\mu}$, where \mathcal{F}_{m_j} is the usual flag space in \mathbb{C}^{m_j};

(iii) there exists a holomorphic projection $\pi^\mathfrak{m} : gH_0 \in \mathcal{F}_n \mapsto gH_0^\mathfrak{m} \in \mathcal{F}^\mathfrak{m}_n$, such that

$$(\pi^\mathfrak{m})^{-1}(\zeta) \approx \mathcal{F}_{m_1} \times \cdots \times \mathcal{F}_{m_\mu}, \quad \zeta \in \mathcal{F}^\mathfrak{m}_n. $$

Then we have

Theorem 7. Let $D \Subset \mathcal{F}_n$ be a pseudoconvex domain with smooth boundary which is not Stein. Then there exists a unique sequence $\mathfrak{m} = (m_1, \ldots, m_\mu)$ with $1 < \mu < n$ and a Stein domain $D_0 \Subset \mathcal{F}^\mathfrak{m}_n$ with smooth boundary such that $D = (\pi^\mathfrak{m})^{-1}(D_0)$.
Proof. It suffices to prove the theorem under the assumption that D contains the base point O in \mathcal{F}_n. We consider the c-Robin function $\Lambda(z)$ for D and define

$$\mathcal{X}_0 := \{X \in M_n(\mathbb{C}) : \left[\frac{\partial^2 \Lambda(\exp tX(O))}{\partial t \partial t} \right]_{t=0} = 0 \}.$$

We see from the assumption for D and Lemma 5 \mathcal{X}_0 is a Lie subalgebra of $GL(n, \mathbb{C})$ such that $\mathfrak{g}_0 \subset \mathcal{X}_0 \subset M_n(\mathbb{C})$. By the elementary calculus with property (2) in Lemma 5 we see that such \mathcal{X}_0 must be the following form: there exists $\mathfrak{M} = (m_1, \ldots, m_\mu)$ with $1 < \mu < n$ such that \mathcal{X}_0 is the subset $H_0^{(\mathfrak{m})}$ of $M_n(\mathbb{C})$ which consists of all matrices of the form

$$
\begin{pmatrix}
 h_{m_1} & (*) & (*) \\
 0 & h_{m_j} & (*) \\
 0 & 0 & h_{m_\mu}
\end{pmatrix},
$$

where $h_{m_j} \in M_{m_j}(\mathbb{C})$, $j = 1, \ldots, \mu$, and each (*) is an arbitrary element in the corresponding space $M_{m_j,m_k}(\mathbb{C})$ (here $m_j < m_k$). It follows that the integral manifold Σ_0 of the Lie subalgebra \mathcal{X}_0 passing through O in $GL(n, \mathbb{C})$ is $H_0^{(\mathfrak{m})} \cap GL(n, \mathbb{C})$ and hence it is equal to the isotropy subgroup $H_0^{(\mathfrak{m})}$ of $GL(n, \mathbb{C})$ at the identity I for the generalized flag space $\mathcal{F}_n^{(\mathfrak{m})}$. Thus, for the flag space \mathcal{F}_n, the space $M_0 := GL(n, \mathbb{C})/\Sigma_0$, which was considered in c. in Theorem 5 for general homogeneous spaces, coincides with the space $\mathcal{F}_n^{(\mathfrak{m})}$. Consequently, the projection π_0 and the analytic set $\sigma \subset D \subset M$ defined in c. in Theorem 5 coincide with the projection $\pi_0^{(\mathfrak{m})} : AH_0 \in \mathcal{F}_n \rightarrow A\Sigma_0 = AH_0^{(\mathfrak{m})} \in \mathcal{F}_n^{(\mathfrak{m})}$ (where $A \in GL(n, \mathbb{C})$) and the analytic set $H_0^{(\mathfrak{m})}/H_0 \cong \bigcap_{j=1}^{\mu} \mathcal{F}_{m_j}$ for $\zeta \in \mathcal{F}_n^{(\mathfrak{m})}$. Using c. in Theorem 5, there exists a Stein domain $D_0 \subset \mathcal{F}_n^{(\mathfrak{m})}$ with smooth boundary such that $D = \pi_0^{-1}(D_0)$. Theorem 7 is completely proved.

The following remark is from T. Ueda. Consider two generalized flag spaces $\mathcal{F}_n^{(\mathfrak{m})}$ and $\mathcal{F}_n^{(\mathfrak{L})}$ in \mathbb{C}^n, where $\mathfrak{M} = (m_1, \ldots, m_\mu)$, $\mathfrak{L} = (l_1, \ldots, l_\nu)$, $\mu > \nu$, and

$$l_1 = m_1 + m_2 + \ldots + m_{j_1}, \ldots, l_\nu = m_{j_{\nu-1}+1} + \ldots + m_\mu.$$

We introduce the notation $\mathfrak{M} < \mathfrak{L}$ for this situation. Then we have the canonical projection

$$\pi^{(\mathfrak{m})}_{\mathfrak{L}} : gH_0^{(\mathfrak{m})} \in \mathcal{F}_n^{(\mathfrak{m})} \mapsto gH_0^{(\mathfrak{L})} \in \mathcal{F}_n^{(\mathfrak{L})},$$

where $H_0^{(\mathfrak{m})}$ is the isotropy subgroup of G for $\mathcal{F}_n^{(\mathfrak{m})}$ at the base point $O^{(\mathfrak{m})}$. Thus, for each $z \in \mathcal{F}_n^{(\mathfrak{L})}$,

$$(\pi^{(\mathfrak{m})}_{\mathfrak{L}})^{-1}(z) \approx \mathcal{F}_n^{(\mathfrak{m})}_{l_1} \times \ldots \times \mathcal{F}_n^{(\mathfrak{m})}_{l_\nu}$$

as complex manifolds.

where $\mathfrak{M}_k = (m_{j_{k-1}+1}, \ldots, m_{j_k})$, $k = 1, 2, \ldots, \nu$. If $\mathfrak{M} = (1, \ldots, 1)$, i.e., $\mathcal{F}_n^{(\mathfrak{m})} = \mathcal{F}_n$, we simply write $\pi^{(\mathfrak{m})}_{\mathfrak{L}} = \pi_{\mathfrak{L}}$.
By use of Theorem 7 we have:

Corollary 3. Let D be a pseudoconvex domain with smooth boundary in $F_n^{\mathbb{R}}$ which is not Stein. Then there exists a unique \mathcal{L} such that $\mathfrak{M} \prec \mathcal{L}$ and a Stein domain D_0 in $F_n^{\mathbb{C}}$ with smooth boundary such that $D = (\pi_\mathcal{L})^{-1}(D_0) = D$.

T. Ueda has another proof of this corollary following ideas in the paper [1] (which is based on [14]).

REFERENCES

(Kang-Tae Kim) DEPARTMENT OF MATHEMATICS, POHANG UNIVERSITY, POHANG, KYUNGBUK 790-784, KOREA

E-mail address: kimkt@postech.ac.kr

(Norman Levenberg) DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47405-5701, USA

E-mail address: nlevenbe@indiana.edu

(Hiroshi Yamaguchi) 2-6-20-3 SHIROMACHI, HIKONE, SHIGA 552-0068, JAPAN

E-mail address: h.yamaguchi@2.s2.dion.ne.jp